Skip to main content

Advertisement

Log in

Influence of Direct Annealing Heat Treatment on the Mechanical Properties of As-Casting TWIP Steels

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of direct annealing on the mechanical properties of twinning-induced plasticity (TWIP) steel as casting condition has been investigated in this work. The results show that the UTS increased by about 50 MPa, from 350 to 400 MPa after direct annealing heat treatment; while elongation increased from 9 to 19%. The increasing of UTS after direct annealing heat treatment can be attributed to the precipitation strengthening effect and twinning-induced plasticity effect. The decrease in SFE of the austenite matrix also plays an important roll on the tensile properties of present TWIP steels in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. O. Bouaziz and N. Guelton, Modelling of TWIP Effect on Work-Hardening[J], Mater. Sci. Eng., A, 2001, 319(15), p 246–249

    Article  Google Scholar 

  2. S. Allain, J.P. Chateau, and O. Bouaziz, A Physical Model of the Twinning-Induced Plasticity Effect in a High Manganese Austenitic Steel[J], Mater. Sci. Eng., A, 2004, 387(1), p 143–147

    Article  Google Scholar 

  3. O. Bouaziz, S. Allain, and C. Scott, Effect of Grain and Twin Boundaries on the Hardening Mechanisms of Twinning-Induced Plasticity Steels[J], Scr. Mater., 2008, 58(6), p 484–487

    Article  Google Scholar 

  4. S. Kang, Y.S. Jung, J.H. Jun et al., Effects of Recrystallization Annealing Temperature on Carbide Precipitation, Microstructure, Mechanical Properties in Fe-18Mn-0.6C-1.5Al TWIP Steel[J], Mater. Sci. Eng., A, 2010, 527(3), p 745–751

    Article  Google Scholar 

  5. S. Vercammen, B. Blanpain, B.C.D. Cooman et al., Cold Rolling Behaviour of an Austenitic Fe-30Mn-3Al-3Si TWIP-Steel: The Importance of Deformation Twinning[J], Acta Mater., 2004, 52(7), p 2005–2012

    Article  Google Scholar 

  6. B.X. Huang, X.D. Wang, Y.H. Rong et al., Mechanical Behavior and Martensitic Transformation of an Fe-Mn-Si-Al-Nb alloy[J], Mater. Sci. Eng., A, 2006, 438(9), p 306–311

    Article  Google Scholar 

  7. D. Barbier, N. Gey, S. Allain et al., Analysis of the Tensile Behavior of a TWIP Steel Based on the Texture and Microstructure Evolutions[J], Mater. Sci. Eng., A, 2009, 500(1), p 196–206

    Article  Google Scholar 

  8. O. Bouaziz, C.P. Scott, and G. Petitgand, Nanostructured Steel with High Work-Hardening by the Exploitation of the Thermal Stability of Mechanically Induced Twins[J], Scr. Mater., 2009, 60(8), p 714–716

    Article  Google Scholar 

  9. O. Bouaziz, S. Allain, and C. Scott, Effect of Grain and Twin Boundaries on the Hardening Mechanisms of Twinning-Induced Plasticity Steels[J], Scr. Mater., 2008, 58(6), p 484–487

    Article  Google Scholar 

  10. O. Bouaziz and N. Guelton, Modelling of TWIP Effect on Work-Hardening[J], Mater. Sci. Eng., A, 2001, 319(15), p 246–249

    Article  Google Scholar 

  11. L. Meng, P. Yang, Q. Xie et al., Dependence of Deformation Twinning on Grain Orientation in Compressed High Manganese Steels[J], Scr. Mater., 2007, 56(11), p 931–934

    Article  Google Scholar 

  12. M.H. Razmpoosh, M. Shamanian, and M. Esmailzadeh, The Microstructural Evolution and Mechanical Properties of Resistance Spot Welded Fe-31Mn-3Al-3Si TWIP Steel[J], Mater. Des., 2015, 67, p 571–576

    Article  Google Scholar 

  13. C.S. Hong, T.K. Ha, and Y.W. Chang, Kinetics of Deformation Induced Martensitic Transformation in a 304 Stainless Steel[J], Scr. Mater., 2001, 45(7), p 823–829

    Article  Google Scholar 

  14. S. Zaefferer, J. Ohlert, and W. Bleck, A Study of Microstructure, Transformation Mechanisms and Correlation Between Microstructure and Mechanical Properties of a Low Alloyed TRIP Steel[J], Dalton Trans., 2004, 52(9), p 2765–2778

    Google Scholar 

  15. B.C.D. Cooman, Structure-Properties Relationship in TRIP Steels Containing Carbide-Free Bainite[J], Curr. Opin. Solid State Mater. Sci., 2004, 8(s 3–4), p 285–303

    Article  Google Scholar 

  16. J.B. Seol, J.E. Jung, Y.W. Jang et al., Influence of Carbon Content on the Microstructure, Martensitic Transformation and Mechanical Properties in Austenite/ε-Martensite Dual-Phase Fe-Mn-C Steels[J], Acta Mater., 2013, 61(2), p 558–578

    Article  Google Scholar 

  17. J.E. Jin and Y.K. Lee, Effects of Al on Microstructure and Tensile Properties of C-Bearing High Mn TWIP Steel[J], Acta Mater., 2012, 60(4), p 1680–1688

    Article  Google Scholar 

  18. A. Saeed-Akbari, J. Imlau, U. Prahl et al., Derivation and Variation in Composition-Dependent Stacking Fault Energy Maps Based on Subregular Solution Model in High-Manganese Steels[J], Metall. Mater. Trans. A, 2009, 40(13), p 3076–3090

    Article  Google Scholar 

  19. R.D.K. Misra, B.R. Kumar, M. Somani et al., Deformation Processes During Tensile Straining of Ultrafine/Nanograined Structures Formed by Reversion in Metastable Austenitic Steels[J], Scr. Mater., 2008, 59(1), p 79–82

    Article  Google Scholar 

  20. J.B. Seol, D. Raabe, P.P. Choi et al., Atomic scale Effects of Alloying, Partitioning, Solute Drag and Austempering on the Mechanical Properties of High-Carbon Bainitic–Austenitic TRIP Steels[J], Acta Mater., 2012, 60(17), p 6183–6199

    Article  Google Scholar 

  21. A. Dumay, J.P. Chateau, S. Allain et al., Influence of Addition Elements on the Stacking-Fault Energy and Mechanical Properties of an Austenitic Fe-Mn-C Steel[J], Mater. Sci. Eng., A, 2008, 483, p 184–187

    Article  Google Scholar 

  22. S.C. Yun, H.J. Kim, C.M. Bae et al., Effect of Heat Treatment on Microstructures and Mechanical Properties of Severe Plastically Deformed Hypo- and Hyper-Eutectoid Steels by Caliber Rolling Process[J], J. Nanosci. Nanotechnol., 2016, 16(2), p 1902–1906

    Article  Google Scholar 

  23. H. Xu, W. Cao, H. Dong et al., Effects of Aluminium on the Microstructure and Mechanical Properties in 0.2C-5Mn Steels under Different Heat Treatment Conditions[J], ISIJ Int., 2015, 55(3), p 662–669

    Article  Google Scholar 

  24. Z.B. Jiao, J.H. Luan, M.K. Miller et al., Effects of Mn Partitioning on Nanoscale Precipitation and Mechanical Properties of Ferritic Steels Strengthened by NiAl Nanoparticles[J], Acta Mater., 2015, 84, p 283–291

    Article  Google Scholar 

  25. I.G. Bucse, O. Ghermec, M. Ciobanu et al., Effects of Heat Treatment on Strength Wear Sintered Alloy Steels[J], Biotechnol. Adv., 2015, 1128(1), p 315–321

    Google Scholar 

  26. J.K. Jung, N.K. Kim, Y.S. Yeon et al., Effect of Annealing Temperature and Alloying Elements on the Mechanical Properties of Fe-Mn-C TWIP Steels[J], J. Arthroplasty, 2003, 18(1), p 121–122

    Article  Google Scholar 

  27. L. Bracke, K. Verbeken, L. Kestens et al., microstructure and Texture Evolution During Cold Rolling and Annealing of a High Mn TWIP Steel[J], Acta Mater., 2009, 57(5), p 1512–1524

    Article  Google Scholar 

  28. S. Kang, Y.S. Jung, J.H. Jun et al., Effects of Recrystallization Annealing Temperature on Carbide Precipitation, Microstructure, Mechanical Properties in Fe-18Mn-0.6C-1.5Al TWIP Steel[J], Mater. Sci. Eng., A, 2010, 527(3), p 745–751

    Article  Google Scholar 

  29. W.C. Cheng, Phase Transformations of an Fe-0.85 C-17.9 Mn-7.1 Al Austenitic Steel After Quenching and Annealing[J], J. Miner. Metals Mater. Soc., 2014, 66(9), p 1809–1820

    Article  Google Scholar 

  30. J. Wan, S. Chen, and T.Y. Hsu, The Stability of Transition Phases in Fe-Mn-Si Based Alloys[J], Calphad, 2001, 25(3), p 355–362

    Article  Google Scholar 

  31. A.S. Hamada, L.P. Karjalainen, M.C. Somani et al., Deformation Mechanisms in High-Al Bearing High-Mn TWIP Steels in Hot Compression and in Tension at Low Temperatures[J], Mater. Sci. Forum, 2007, 550, p 217–222

    Article  Google Scholar 

  32. G. Frommeyer, U. Brux, and P. Neumann, Supra-Ductile and High-Strength Manganese-TRIP/TWIP Steels for High Energy Absorption Purposes[J], ISIJ Int., 2003, 43(3), p 438–446

    Article  Google Scholar 

  33. Y.S. Han and S.H. Hong, The Effect of Al on Mechanical Properties and Microstructures of Fe-32Mn-12Cr-xAl-0.4C Cryogenic Alloys[J], Mater. Sci. Eng., A, 1997, 222(1), p 76–83

    Article  Google Scholar 

  34. G.B. Olson and M. Cohen, A General Mechanism of Martensitic Nucleation: Part III. Kinetics of Martensitic Nucleation[J], Metall. Mater. Trans. A, 1976, 7(12), p 1915–1923

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guojin Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, G., Hu, S., Gao, Y. et al. Influence of Direct Annealing Heat Treatment on the Mechanical Properties of As-Casting TWIP Steels. J. of Materi Eng and Perform 26, 1981–1985 (2017). https://doi.org/10.1007/s11665-017-2634-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2634-6

Keywords

Navigation