Skip to main content

Advertisement

Log in

Influence of SMAT Parameters on Microstructural and Mechanical Properties of Al-Mg-Si Alloy AA 6061

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present work, the influence of surface mechanical attrition treatment (SMAT) parameters on the microstructural and mechanical properties of an aluminum-magnesium-silicon alloy AA 6061 was studied using design of experiment technique. Balls of three different diameters were used, and SMAT was done for three different durations. The microstructural features of the surface layer fabricated by SMAT were characterized by cross-sectional scanning electron microscopic observations, x-ray diffraction technique and transmission electron microscopy. The microindentation hardness, nanoindentation hardness and surface roughness were determined. Due to SMAT, nanocrystallites formed on the surface and near-surface regions, and hardness and surface roughness increased. The ball diameter was the most influencing SMAT parameter compared to the treatment duration. However, interaction between ball diameter and treatment duration could not be ignored. Regression equations were developed relating the process parameters to the surface properties. The ball diameter and treatment duration could thus be properly selected as per the required values of roughness and/or the hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K. Lu and J. Lu, Nanostructured Surface Layer on Metallic Materials Induced by Surface Mechanical Attrition Treatment, Mater. Sci. Eng., A, 2004, 375, p 38–45

    Article  Google Scholar 

  2. H. Gleiter, Nanostructured Materials: Basic Concepts and Microstructure, Acta Mater., 2000, 48, p 1–29

    Article  Google Scholar 

  3. K.S. Kumar, H. Van Swygenhoven, and S. Suresh, Mechanical Behavior of Nanocrystalline Metals and Alloys, Acta Mater., 2003, 51, p 5743–5774

    Article  Google Scholar 

  4. J.L. Liu, M. Umemoto, Y. Todaka, and K. Tsuchiya, Formation of a Nanocrystalline Surface Layer on Steels by Air Blast Shot Peening, J. Mater. Sci., 2007, 42, p 7716–7720

    Article  Google Scholar 

  5. K. Dai, J. Villegas, Z. Stone, and L. Shaw, Finite Element Modeling of the Surface Roughness of 5052 Al Alloy Subjected to a Surface Severe Plastic Deformation Process, Acta Mater., 2004, 52, p 5771–5782

    Article  Google Scholar 

  6. G. Liu, J. Lu, and K. Lu, Surface Nanocrystallization of 316L Stainless Steel Induced by Ultrasonic Shot Peening, Mater. Sci. Eng., A, 2000, 286, p 91–95

    Article  Google Scholar 

  7. X. Wu, N. Tao, Y. Hong, B. Xu, J. Lu, and K. Lu, Microstructure and Evolution of Mechanically-Induced Ultrafine Grain in Surface Layer of Al-Alloy Subjected to USSP, Acta Mater., 2002, 50, p 2075–2084

    Article  Google Scholar 

  8. H.W. Chang, P.M. Kelly, Y.N. Shi, and M.X. Zhang, Effect of Eutectic Si on Surface Nanocrystallization of Al–Si Alloys by Surface Mechanical Attrition Treatment, Mater. Sci. Eng., A, 2011, 530, p 304–314

    Article  Google Scholar 

  9. H.W. Chang, P.M. Kelly, Y.-N. Shi, and M.-X. Zhang, Thermal Stability of Nanocrystallized Surface Produced by Surface Mechanical Attrition Treatment in Aluminum Alloys, Surf. Coat. Technol., 2012, 206, p 3970–3980

    Article  Google Scholar 

  10. Y. Liu, B. Jin, and J. Lu, Mechanical Properties and Thermal Stability of Nanocrystallized Pure Aluminum Produced by Surface Mechanical Attrition Treatment, Mater. Sci. Eng., A, 2015, 636, p 446–451

    Article  Google Scholar 

  11. L. Wen, Y. Wang, Y. Zhou, L. Guo, and J. Ouyang, Iron-Rich Layer Introduced by SMAT and Its Effect on Corrosion Resistance and Wear Behavior of 2024 Al Alloy, Mater. Chem. Phys., 2011, 126, p 301–309

    Article  Google Scholar 

  12. L. Wen, Y. Wang, Y. Zhou, L. Guo, and J. Ouyang, Microstructure and Corrosion Resistance of Modified 2024 Al Alloy Using Surface Mechanical Attrition Treatment Combined with Microarc Oxidation Process, Corros. Sci., 2011, 53, p 473–480

    Article  Google Scholar 

  13. B. Arifvianto, Suyitno, M. Mahardika, P. Dewo, P.T. Iswanto, and U.A. Salim, Effect of Surface Mechanical Attrition Treatment (SMAT) on Microhardness, Surface Roughness and Wettability of AISI 316L, Mater. Chem. Phys., 2011, 125, p 418–426

    Article  Google Scholar 

  14. T. Roland, D. Retraint, K. Lu, and J. Lu, Fatigue Life Improvement Through Surface Nanostructuring of Stainless Steel by Means of Surface Mechanical Attrition Treatment, Scr. Mater., 2006, 54, p 1949–1954

    Article  Google Scholar 

  15. N.R. Tao, M.L. Sui, J. Lu, and K. Lu, Surface Nanocrystallization of Iron Induced by Ultrasonic Shot Peening, Nano Mater., 1999, 11, p 433–440

    Article  Google Scholar 

  16. X. Yong, G. Liu, and K. Lu, Characterization and Properties of Nanostructured Surface Layer in a Low Carbon Steel Subjected to Surface Mechanical Attrition, J. Mater. Sci. Technol., 2003, 19, p 1–4

    Article  Google Scholar 

  17. K.Y. Zhu, A. Vassel, F. Brisset, K. Lu, and J. Lu, Nanostructure Formation Mechanism of α-Titanium Using SMAT, Acta Mater., 2004, 52, p 4101–4110

    Article  Google Scholar 

  18. Y.S. Zhang and Z. Han, Fretting Wear Behavior of Nanocrystalline Surface Layer of Pure Copper Under Oil Lubrication, Tribol. Lett., 2007, 27, p 53–59

    Article  Google Scholar 

  19. S. Anand Kumar, S. Ganesh Sundara Raman, T.S.N. Sankara Narayanan, and R. Gnanamoorthy, Influence of Surface Mechanical Attrition Treatment on Fretting Wear Behavior of Ti-6Al-4V, Adv. Mater. Res., 2012, 463–464, p 316–320

    Article  Google Scholar 

  20. S. Anand Kumar, S. Ganesh Sundara Raman, T.S.N. Sankara Narayanan, and R. Gnanamoorthy, Fretting Wear Behaviour of Surface Mechanical Attrition Treated Alloy 718, Surf. Coat. Technol., 2012, 206, p 4425–4432

    Article  Google Scholar 

  21. Y.S. Zhang, K. Wang, Z. Han, and G. Liu, Dry Sliding Wear Behavior of Copper with Nano-scaled Twins, Wear, 2007, 262, p 1463–1470

    Article  Google Scholar 

  22. S. Anand Kumar, S. Ganesh Sundara Raman, and T.S.N. Sankara Narayanan, Influence of Surface Mechanical Attrition Treatment Duration on Fatigue Lives of Ti-6Al-4V, Trans. Indian Inst. Met., 2014, 67(1), p 137–141

    Article  Google Scholar 

  23. S. Anand Kumar, S. Ganesh Sundara Raman, and T.S.N. Sankara Narayanan, Effect of Surface Mechanical Attrition Treatment on Fatigue Lives of Alloy 718, Trans. Indian Inst. Met., 2012, 65, p 473–477

    Article  Google Scholar 

  24. T. Balusamy, S. Kumar, and T.S.N. Sankara Narayanan, Effect of Surface Nanocrystallization on the Corrosion Behavior of AISI, 409 Stainless Steel, Corros. Sci., 2010, 52, p 3826–3834

    Article  Google Scholar 

  25. P.J. Ross, Taguchi Techniques for Quality Engineering, McGraw-Hill, New York, 1996

    Google Scholar 

  26. L. Wagner, Mechanical Surface Treatments on Titanium, Aluminum and Magnesium Alloys, Mater. Sci. Eng., A, 1999, 263, p 210–216

    Article  Google Scholar 

  27. Y. Fu, J. Wei, and A.W. Batchelor, Some Considerations on the Mitigation of Fretting Damage by the Application of Surface-Modification Technologies, J. Mater. Process. Technol., 2000, 99, p 231–245

    Article  Google Scholar 

  28. C. Colombie, Y. Berthier, A. Floquet, L. Vincent, and M. Godet, Fretting Load-Carrying Capacity of Wear Debris, ASME J. Tribol., 1984, 106, p 185–194

    Article  Google Scholar 

  29. R.K. Roy, A Primer on Taguchi Method, Van Noshtrand Reinhold Int. Co. Ltd, New York, 1990

    Google Scholar 

  30. H. Saitoh, T. Ochi, M. Kubota, Formation of surface nanocrystalline structure in steels by air blast shot peening, in Proceedings of the 10th International Conference on Shot Peening, (2008), p. 488–493

  31. B.N. Mordyuk and G.I. Prokopenko, Ultrasonic Impact Peening for the Surface Properties’ Management, J. Sound Vib., 2007, 308, p 855–866

    Article  Google Scholar 

  32. V.S. Sarma, J. Wang, W.W. Jian, A. Kauffmann, H. Conrad, J. Freudenberger, and Y.T. Zhu, Role of Stacking Fault Energy in Strengthening Due to Cryo-Deformation of FCC Metals, Mater. Sci. Eng., A, 2010, 527, p 7624–7630

    Article  Google Scholar 

  33. D.E. Stegall, M.A. Mamun, and A.A. Elmustafa, The Role of Stacking Fault Energy on the Indentation Size Effect of FCC Pure Metals and Alloys, Mater. Res. Soc. Symp. Proc., 2012, 1424, p 7–12

    Google Scholar 

  34. B.D. Cullity, Elements of x-ray Diffraction, Addison Wesley, Massachusetts, 1978

    Google Scholar 

  35. H. Chen, Y.L. Yao, J.W. Kysar, I.C. Noyan, and Y. Wang, Fourier Analysis of x-ray Micro-diffraction Profiles to Characterize Laser Shock Peened Metals, Int. J. Solids Struct., 2005, 42, p 3471–3485

    Article  Google Scholar 

  36. S. Anand Kumar, R. Sundar, S. Ganesh Sundara Raman, H. Kumar, R. Gnanamoorthy, R. Kaul, K. Ranganathan, S.M. Oak, and L.M. Kukreja, Fretting Wear Behavior of Laser Peened Ti-6Al-4V, Tribol. Trans., 2012, 55, p 615–623

    Article  Google Scholar 

  37. L. Zhu, B. Xu, H. Wang, and C. Wang, Effect of Residual Stress on the Nanoindentation Response of (100) Copper Single Crystal, Mater. Chem. Phys., 2012, 136, p 561–565

    Article  Google Scholar 

  38. A.C. Fischer-Cripps, Nanoindentation, Springer, New York, 2011

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Anand Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anand Kumar, S., Satish Kumar, P., Ganesh Sundara Raman, S. et al. Influence of SMAT Parameters on Microstructural and Mechanical Properties of Al-Mg-Si Alloy AA 6061. J. of Materi Eng and Perform 26, 1947–1957 (2017). https://doi.org/10.1007/s11665-017-2612-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2612-z

Keywords

Navigation