Skip to main content
Log in

The Effect of Surface Mechanical Attrition Treatment Time on Microstructure and Mechanical Properties of AZ31 Mg Alloy

  • NEW SUBSTANCES, MATERIALS, AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

In recent years, surface mechanical attrition treatment (SMAT) operations have drawn the researchers attention in terms of the impact of this operation on wear resistance, hardness and creation of residual stresses. In this study, the effect of SMAT operation time on microstructure, residual stress, hardness and wear resistance was investigated. For this purpose, the specimens were subjected to SMAT at three times of 10, 15 and 20 min and compared with the As-received specimen (specimen without SMAT). XRD has been used to measure grain size and residual stress, SEM to check the microstructure, the hardness, wear resistance and roughness of the specimens were also measured. The results showed that the grain size decreases due to SMAT operation, so that the grain size decreasees from 139.2 nm in the As-received specimen to 93.2, 72.6 and 34.9 nm in the SMAT specimens with times of 10, 15 and 20 minutes, respectively. Also, residual stress is created due to compressive force and microstrain as a result of SMAT operation, which is 158, 170 and 234 MPa for 10, 15 and 20 min SMAT specimens, respectively. As a result of SMAT operation, the hardness and wear resistance of the specimens increase, which is due to the fact that the fine grains, nanocrystalline of their grains and many microstrains created. Studies have shown that hardness and wear resistance increase by 36, 45, 62% and 16, 27, 36% at SMAT times of 10, 15 and 20 min, respectively, compared to the As-received specimen. Examination of the wear mechanism indicates that the wear mechanism in the As-received specimen is strong adhesive and tribochemical wear, which in SMAT specimens decreases due to the increase in hardness of the adhesive wear. Also, by performing SMAT operation, the specimen roughness increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Fisher, P.A., Metall. Rev., 2013, vol. 23, no. 1, p. 269.

    Article  Google Scholar 

  2. Polmear, I.J., Met. Sci. J., 1994, vol. 10, no. 1, p. 1.

    CAS  Google Scholar 

  3. Zhou, H., Mater. Rev., 2003, vol. 17, no. 11, p. 16.

    Google Scholar 

  4. Duan, M., Luo, L., and Liu, Y., J. Alloys Compd., 2020, vol. 823, p. 153691.

    Article  CAS  Google Scholar 

  5. Song, G.L. and Atrens, A., Adv. Eng. Mater., 2003, vol. 5, p. 837.

    Article  CAS  Google Scholar 

  6. Wang, B.J., Wang, S.D., Xu, D.K., and Han, E.H., J. Mater. Sci. Technol., 2017, vol. 33, p. 1075.

    Article  CAS  Google Scholar 

  7. Kojima, Y., Mater. Sci. Forum, 2000, vol. 350, p. 3.

    Article  Google Scholar 

  8. Zhao, X.H., Zhao, Y.J., and Liu, Y., Metals, 2017, vol. 7, p. 1.

    Google Scholar 

  9. Liu, W.C., Wu, G.H., Zhai, C.Q., Ding, W.J., and Korsunsky, A.M., Int. J. Plast., 2013, vol. 49, p. 16.

    Article  CAS  Google Scholar 

  10. Zhang, J., et al., J. Magnesium Alloys, 2021, vol. 9, p. 1187.

    Article  CAS  Google Scholar 

  11. Zhang, J., Zhao, X., Meng, D., et al., Int. J. Miner., Metall. Mater., 2022, vol. 29, p. 1413. https://doi.org/10.1007/s12613-022-2414-7

    Article  CAS  Google Scholar 

  12. Zhao, J., Xia, W., Li, N., and Li, F.L., Trans. Nonferrous Met. Soc. China, 2014, vol. 24, p. 441.

    Article  CAS  Google Scholar 

  13. Tang, L.L., Zhao, Y.H., Islamgaliev, R.K., Valiev, R.Z., and Zhu, Y.T., J. Alloys Compd., 2017, vol. 721, p. 577.

    Article  CAS  Google Scholar 

  14. Liu, C., et al., J. Alloys Compd., 2019, vol. 770, p. 500.

    Article  CAS  Google Scholar 

  15. Dong, Z., Wang, F., Qian, D., Yin, F., Wang, H., Wang, X., Hu, S., and Chi, J., Metals, 2022, vol. 12, no. 3, p. 424.

    Article  CAS  Google Scholar 

  16. Liu, Y., Jin, B., and Lu, J., Mater. Sci. Eng., A, 2015, vol. 636, p. 446.

    Article  CAS  Google Scholar 

  17. Wei, Y.H., Liu, B.S., Hou, L.F., et al., J. Alloys Compd., 2008, vol. 452, no. 2, p. 336.

    Article  CAS  Google Scholar 

  18. Gao, J.C., Wang, Q., and Gao, Z.Y., J. Funct. Mater., 2010, vol. 41, no. 5, p. 741.

    CAS  Google Scholar 

  19. Haghighi, O., Amini, K., and Gharavi, F., Prot. Met. Phys. Chem. Surf., 2020, vol. 56, p. 164.

    Article  CAS  Google Scholar 

  20. Lai, H.H., Cheng, H.C., Lee, C.Y., Lin, C.M., and Wu, W., J. Mater. Process. Technol., 2020, vol. 284, p.116747.

    Article  CAS  Google Scholar 

  21. Wen, Y., Wu, Y., Hua, L., Xie, L., Wang, L., Zhang, L.-C., and Lu, W., Mater. Des., 2021, vol. 206, p. 109760.

    Article  CAS  Google Scholar 

  22. Soleimany, J., et al., Phys. Met. Metallogr., 2019, vol. 120, p. 888.

    Article  Google Scholar 

  23. Mokarian, B., Amini, K., Ghayour, H., and Gharavi, F., Trans. IMF, 2019, vol. 97, no. 3, p. 121.

    Article  CAS  Google Scholar 

  24. Chen, G., Fu, Y., Cui, Y., Gao, J., Guo, X., Gao, H., Wu, S., Lu, J., Lin, Q., and Shi, S., Int. J. Fatigue, 2019, vol. 127, p. 461.

    Article  CAS  Google Scholar 

  25. Bagherifard, S., Hickey, D.J., Fintová, S., Pastorek, F., Fernandez-Pariente, I., Bandini, M., et al., Acta Biomater., 2018, vol. 66, p. 93.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by regular institutional funding, and no additional grants were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Heidari or Kamran Amini.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali Kazemi, Heidari, A., Amini, K. et al. The Effect of Surface Mechanical Attrition Treatment Time on Microstructure and Mechanical Properties of AZ31 Mg Alloy. Prot Met Phys Chem Surf 59, 453–460 (2023). https://doi.org/10.1134/S2070205123700508

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205123700508

Keywords:

Navigation