Skip to main content
Log in

An Alternative Frictional Boundary Condition for Computational Fluid Dynamics Simulation of Friction Stir Welding

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

For better application of numerical simulation in optimization and design of friction stir welding (FSW), this paper presents a new frictional boundary condition at the tool/workpiece interface for computational fluid dynamics (CFD) modeling of FSW. The proposed boundary condition is based on an implementation of the Coulomb friction model. Using the new boundary condition, the CFD simulation yields non-uniform distribution of contact state over the tool/workpiece interface, as validated by the experimental weld macrostructure. It is found that interfacial sticking state is present over large area at the tool-workpiece interface, while significant interfacial sliding occurs at the shoulder periphery, the lower part of pin side, and the periphery of pin bottom. Due to the interfacial sticking, a rotating flow zone is found under the shoulder, in which fast circular motion occurs. The diameter of the rotating flow zone is smaller than the shoulder diameter, which is attributed to the presence of the interfacial sliding at the shoulder periphery. For the simulated welding condition, the heat generation due to friction and plastic deformation makes up 54.4 and 45.6% of the total heat generation rate, respectively. The simulated temperature field is validated by the good agreement to the experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng.: R: Rep., 2005, 50(1–2), p 1–78

    Article  Google Scholar 

  2. R. Nandan, T. DebRoy, and H. Bhadeshia, Recent Advances in Friction-Stir Welding-Process, Weldment Structure and Properties, Prog. Mater Sci., 2008, 53(6), p 980–1023

    Article  Google Scholar 

  3. X. Liu, S. Lan, and J. Ni, Analysis of Process Parameters Effects on Friction Stir Welding of Dissimilar Aluminum Alloy to Advanced High Strength Steel, Mater. Des., 2014, 59, p 50–62

    Article  Google Scholar 

  4. K. Sun, Q. Shi, Y. Sun, and G. Chen, Microstructure and Mechanical Property of Nano-SiCp Reinforced High Strength Mg Bulk Composites Produced by Friction Stir Processing, Mater. Sci. Eng. A, 2012, 547, p 32–37

    Article  Google Scholar 

  5. H. Schmidt, J. Hattel, and J. Wert, An Analytical Model for the Heat Generation in Friction Stir Welding, Modell. Simul. Mater. Sci. Eng., 2004, 12(1), p 143

    Article  Google Scholar 

  6. G.-Q. Chen, Q.-Y. Shi, Y.-J. Li, Y.-J. Sun, Q.-L. Dai, J.-Y. Jia, Y.-C. Zhu, and J.-J. Wu, Computational Fluid Dynamics Studies on Heat Generation During Friction Stir Welding of Aluminum Alloy, Comput. Mater. Sci., 2013, 79, p 540–546

    Article  Google Scholar 

  7. H. Su, C.S. Wu, A. Pittner, and M. Rethmeier, Thermal Energy Generation and Distribution in Friction Stir Welding of Aluminum Alloys, Energy, 2014, 77, p 720–731

    Article  Google Scholar 

  8. W. Tang, X. Guo, J. McClure, L. Murr, and A. Nunes, Heat Input and Temperature Distribution in Friction Stir Welding, J. Mater. Process. Manuf. Sci., 1998, 7, p 163–172

    Article  Google Scholar 

  9. T. Seidel and A.P. Reynolds, Visualization of the Material Flow in AA2195 Friction-Stir Welds Using a Marker Insert Technique, Metall. Mater. Trans. A, 2001, 32(11), p 2879–2884

    Article  Google Scholar 

  10. H.N.B. Schmidt, T. Dickerson, and J.H. Hattel, Material Flow in Butt Friction Stir Welds in AA2024-T3, Acta Mater., 2006, 54(4), p 1199–1209

    Article  Google Scholar 

  11. H. Schmidt and J. Hattel, A Local Model for the Thermomechanical Conditions in Friction Stir Welding, Modell. Simul. Mater. Sci. Eng., 2005, 13(1), p 77

    Article  Google Scholar 

  12. Z. Zhang, Comparison of Two Contact Models in the Simulation of Friction Stir Welding Process, J. Mater. Sci., 2008, 43(17), p 5867–5877

    Article  Google Scholar 

  13. M. Grujicic, G. Arakere, C.-F. Yen, and B.A. Cheeseman, Computational Investigation of Hardness Evolution During Friction-Stir Welding of AA5083 and AA2139 Aluminum Alloys, J. Mater. Eng. Perform., 2010, 20(7), p 1097–1108

    Article  Google Scholar 

  14. P.A. Colegrove and H.R. Shercliff, Experimental and Numerical Analysis of Aluminium Alloy 7075-T7351 Friction Stir Welds, Sci. Technol. Weld. Join., 2003, 8(5), p 360–368

    Article  Google Scholar 

  15. P.A. Colegrove and H.R. Shercliff, 3-Dimensional CFD Modelling of Flow Round a Threaded Friction Stir Welding Tool Profile, J. Mater. Process. Technol., 2005, 169(2), p 320–327

    Article  Google Scholar 

  16. R. Nandan, G.G. Roy, T.J. Lienert, and T. Debroy, Three-Dimensional Heat and Material Flow During Friction Stir Welding of Mild Steel, Acta Mater., 2007, 55(3), p 883–895

    Article  Google Scholar 

  17. D.M. Neto and P. Neto, Numerical Modeling of Friction Stir Welding Process: A Literature Review, Int. J. Adv. Manuf. Technol., 2013, 65(1), p 115–126

    Article  Google Scholar 

  18. S. Ji, Q. Shi, L. Zhang, A. Zou, S. Gao, and L. Zan, Numerical Simulation of Material Flow Behavior of Friction Stir Welding Influenced by Rotational Tool Geometry, Comput. Mater. Sci., 2012, 63, p 218–226

    Article  Google Scholar 

  19. Z. Yu, W. Zhang, H. Choo, and Z. Feng, Transient Heat and Material Flow Modeling of Friction Stir Processing of Magnesium Alloy Using Threaded Tool, Metall. Mater. Trans. A, 2012, 43(2), p 724–737

    Article  Google Scholar 

  20. H. Su, C.S. Wu, M. Bachmann, and M. Rethmeier, Numerical Modeling for the Effect of Pin Profiles on Thermal and Material Flow Characteristics in Friction Stir Welding, Mater. Des., 2015, 77, p 114–125

    Article  Google Scholar 

  21. J.W. Qian, J.L. Li, J.T. Xiong, F.S. Zhang, W.Y. Li, and X. Lin, Periodic Variation of Torque and Its Relations to Interfacial Sticking and Slipping During Friction Stir Welding, Sci. Technol. Weld. Join., 2012, 17(4), p 338–341

    Article  Google Scholar 

  22. H. Atharifar, D. Lin, and R. Kovacevic, Numerical and Experimental Investigations on the Loads Carried by the Tool During Friction Stir Welding, J. Mater. Eng. Perform., 2009, 18(4), p 339–350

    Article  Google Scholar 

  23. H. Wang, P.A. Colegrove, and J.F. dos Santos, Numerical Investigation of the Tool Contact Condition During Friction Stir Welding of Aerospace Aluminium Alloy, Comput. Mater. Sci., 2013, 71, p 101–108

    Article  Google Scholar 

  24. B.C. Liechty and B.W. Webb, Modeling the Frictional Boundary Condition in Friction Stir Welding, Int. J. Mach. Tools Manuf, 2008, 48(12–13), p 1474–1485

    Article  Google Scholar 

  25. G. Chen, Q. Shi, Y. Fujiya, and T. Horie, Simulation of Metal Flow During Friction Stir Welding Based on the Model of Interactive Force Between Tool and Material, J. Mater. Eng. Perform., 2014, 23(4), p 1321–1328

    Article  Google Scholar 

  26. N. Mostaghel and T. Davis, Representations of Coulomb Friction for Dynamic Analysis, Earthq. Eng. Struct. Dynam., 1997, 26(5), p 541–548

    Article  Google Scholar 

  27. M. Assidi, L. Fourment, S. Guerdoux, and T. Nelson, Friction Model for Friction Stir Welding Process Simulation: Calibrations from Welding Experiments, Int. J. Mach. Tools Manuf, 2010, 50(2), p 143–155

    Article  Google Scholar 

  28. ANSYS, I., ANSYS ® Fluent,.

  29. M. Yu, W. Li, J. Li, and Y. Chao, Modelling of entire Friction Stir Welding Process by Explicit Finite Element Method, Mater. Sci. Technol., 2012, 28(7), p 812–817

    Article  Google Scholar 

  30. H. Palaniswamy, G. Ngaile, and T. Altan, Finite Element Simulation of Magnesium Alloy Sheet Forming at Elevated Temperatures, J. Mater. Process. Technol., 2004, 146(1), p 52–60

    Article  Google Scholar 

  31. K.C. Mills, Recommended Values of Thermophysical Properties for Selected Commercial Alloys, Chennai, Woodhead, 2002

    Book  Google Scholar 

  32. P.D. Harvey, Engineering Properties of Steel, American Society for Metals Metals Park, Ohio, 1982

    Google Scholar 

  33. D.M. Neto, M.C. Oliveira, J.L. Alves, and L.F. Menezes, Influence of the Plastic Anisotropy Modelling in the Reverse Deep Drawing Process Simulation, Mater. Des., 2014, 60, p 368–379

    Article  Google Scholar 

  34. W. Woo, Z. Feng, X.L. Wang, K. An, B. Clausen, T.A. Sisneros, and J.S. Jeong, In Situ Neutron Diffraction Analysis of Grain Structure During Friction Stir Processing of an Aluminum Alloy, Mater. Lett., 2012, 85, p 29–32

    Article  Google Scholar 

  35. J.G. Kaufman, Properties of Aluminum Alloys: Tensile, Creep, and Fatigue Data at High and Low Temperatures, ASM International, New York, 1999

    Google Scholar 

  36. A. Bastier, M.H. Maitournam, K.D. Van, and F. Roger, Steady State Thermomechanical Modelling of Friction Stir welDing, Sci. Technol. Weld. Join., 2006, 11(3), p 278–288

    Article  Google Scholar 

  37. U. Donatus, G.E. Thompson, X. Zhou, J. Wang, and K. Beamish, Flow Patterns in Friction Stir Welds of AA5083 and AA6082 Alloys, Mater. Des., 2015, 83, p 203–213

    Google Scholar 

  38. Y. Morisada, T. Imaizumi, H. Fujii, M. Matsushita, and R. Ikeda, Three-Dimensional Visualization of Material Flow During Friction Stir Welding of Steel and Aluminum, J. Mater. Eng. Perform., 2014, 23(11), p 4143–4147

    Article  Google Scholar 

Download references

Acknowledgment

The research was supported by the National Natural Science Foundation of China (Grant No. 51375259) and the National Science and Technology Major Project of the Ministry of Science and Technology of China (No. 2012ZX04012-011). Besides, Gaoqiang Chen was supported by the China Scholarship Council (File No. 20130620105) for 2-year study at Oak Ridge National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyu Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Feng, Z., Zhu, Y. et al. An Alternative Frictional Boundary Condition for Computational Fluid Dynamics Simulation of Friction Stir Welding. J. of Materi Eng and Perform 25, 4016–4023 (2016). https://doi.org/10.1007/s11665-016-2219-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2219-9

Keywords

Navigation