Skip to main content
Log in

On the Strain Rate Sensitivity of Abs and Abs Plus Fused Deposition Modeling Parts

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this work the effect of strain rate on the tensile strength of fused deposition modeling parts built with Acrylonitrile-butadiene-styrene (ABS) and ABS plus material is presented. ASTM D638-02a specimens were built with ABS and ABS plus and they were tested on a Schenck Trebel Co. tensile test machine at three different test speeds, equal, lower, and higher to the test speed required by the ASTM D638-02a standard. The experimental tensile strength results were compared and evaluated. The fracture surfaces of selected specimens were examined with a scanning electron microscope, to determine failure mode of the filament strands. It was found that, as the test speed increases, specimens develop higher tensile strength and have higher elastic modulus. Specimens tested in the highest speed of the experiment had on average about 10% higher elastic modulus and developed on average about 11% higher tensile strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E. Karahaliou and P.A. Tarantili, Preparation of Poly (Acrylonitrile-Butadiene-Styrene)/Montmorillonite Nanocomposites and Degradation Studies During Extrusion Reprocessing, J. Appl. Polym. Sci., 2009, 113, p 2271–2281

    Article  Google Scholar 

  2. J. Aalaie and A. Rahmatpour, Study on Preparation and Properties of Acrylonitrile-Butadiene-Styrene/Montmorillonite Nanocomposites, J. Macromol. Sci. Part B, 2007, 46, p 1255–1265

    Article  Google Scholar 

  3. Y. Li and H. Shimizu, Improvement in Toughness of Poly(l-lactide) (PLLA) Through Reactive Blending with Acrylonitrile-Butadiene-Styrene Copolymer (ABS): Morphology and Properties, Eur. Polym. J., 2009, 45, p 738–746

    Article  Google Scholar 

  4. D. Wu, S. Bateman, and M. Partlett, Ground Rubber/Acrylonitrile-Butadiene-Styrene Composites, Compos. Sci. Technol., 2007, 67, p 1909–1919

    Article  Google Scholar 

  5. A. Shenavar and F. Abbasi, Morphology, Thermal, and Mechanical Properties of Acrylonitrile-Butadiene-Styrene/Carbon Black Composites, J. Appl. Polym. Sci., 2007, 105, p 2236–2244

    Article  Google Scholar 

  6. Y. Zhang, Mechanical Property of Fused Deposition Parts, Thesis and Dissertations. Paper 742, Lehigh Preserve University, 2002

  7. L.L. Wang, L.Q. Zhang, and M. Tian, Mechanical and Tribological Properties of Acrylonitrile-Butadiene Rubber Filled with Graphite and Carbon Black, Mater. Des., 2012, 39, p 450–457

    Article  Google Scholar 

  8. S.-K. Yeh, S. Agarwal, and R.K. Gupta, Wood-Plastic Composites Formulated With Virgin and Recycled ABS, Compos. Sci. Technol., 2009, 69, p 2225–2230

    Article  Google Scholar 

  9. A.K. Sood, R.K. Ohdar, and S.S. Mahapatra, Experimental Investigation and Empirical Modelling of FDM Process for Compressive Strength Improvement, J. Adv. Res., 2012, 3, p 81–90

    Article  Google Scholar 

  10. Opel Reducing Assembly Tool Production Costs By Up to 90% with Stratasys 3D Printing, http://blog.stratasys.com/2015/11/18/opel-3d-printing/ (2015)

  11. BMW Manufacturing Jigs and Fixtures with FDM, http://www.stratasys.com/resources/case-studies/automotive/bmw (2015)

  12. K. Cooper, Rapid Prototyping Technology: Selection and Application, Marcel Dekker, New York, 2005

    Google Scholar 

  13. M. Sfakiotakis, J. Fasoulas, and R. Gliva, Dynamic Modeling and Experimental Analysis of a Two-Ray Undulatory Fin Robot, in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p 339–346

  14. Â.F. Rodrõ, J.P. Thomas, and J.E. Renaud, Mechanical Behavior of Acrylonitrile Butadiene Styrene (ABS) Fused Deposition Materials, Exp. Investig. Rapid Prototyp. J., 2001, 7(3), p 148–158

    Article  Google Scholar 

  15. S. Ahn and P.K. Wright, Anisotropic Material Properties of Fused Deposition Modeling ABS, Rapid Prototyp. J., 2002, 8, p 248–257

    Article  Google Scholar 

  16. S.H. Arivazhagan, Masood, Dynamic Mechanical Properties of ABS Material Processed by Fused Deposition Modelling, Int. J. Eng. Res. Appl., 2012, 2, p 2009–2014

    Google Scholar 

  17. M. Nikzad, S.H. Masood, I. Sbarski, A. Groth, Thermo-Mechanical Properties of a Metal-filled Polymer Composite for Fused Deposition Modelling Applications, in 5th Australasian Congress on Applied Mechanics, ACAM 2007, Brisbane, 10–12 December 2007

  18. M. Nikzad, S.H. Masood, and I. Sbarski, Thermo-Mechanical Properties of a Highly Filled Polymeric Composites for Fused Deposition Modeling, Mater. Des., 2011, 32, p 3448–3456

    Article  Google Scholar 

  19. L. Li, Q. Sun, C. Bellehumeur, and P. Gu, Composite Modeling and Analysis for Fabrication of FDM Prototypes with Locally Controlled Properties, J. Manuf. Process., 2002, 4, p 129–141

    Article  Google Scholar 

  20. L.M. Galantucci, F. Lavecchia, and G. Percoco, Study of Compression Properties of Topologically Optimized FDM Made Structured Parts, CIRP Ann. Manuf. Technol., 2008, 57, p 243–246

    Article  Google Scholar 

  21. B.N. Panda, M.V.A.R. Bahubalendruni, and B.B. Biswal, Comparative Evaluation of Optimization Algorithms at Training of Genetic Programming for Tensile Strength Prediction of FDM Processed Part, Procedia Mater. Sci., 2014, 91, p 2250–2257

    Article  Google Scholar 

  22. D. Croccolo, M. De Agostinis, and G. Olmi, Experimental Characterization and Analytical Modelling of the Mechanical Behaviour of Fused Deposition Processed Parts made of ABS-M30, Comput. Mater. Sci., 2013, 79, p 506–518

    Article  Google Scholar 

  23. B.M. Tymrak, M. Kreiger, and J.M. Pearce, Mechanical Properties of Components Fabricated with Open-Source 3-D Printers Under Realistic Environmental Conditions, Mater. Des., 2014, 58, p 242–246

    Article  Google Scholar 

  24. C.S. Lee, S.G. Kim, H.J. Kim, and S.H. Ahn, Measurement of Anisotropic Compressive Strength of Rapid Prototyping Parts, J. Mater. Process. Technol., 2007, 187–188, p 627–630

    Article  Google Scholar 

  25. A.K. Sood, R.K. Ohdar, and S.S. Mahapatra, Parametric Appraisal of Mechanical Property of Fused Deposition Modelling Processed Parts, Mater. Des., 2010, 31, p 287–295

    Article  Google Scholar 

  26. S. Raut, V.S. Jatti, N.K. Khedkar, and T.P. Singh, Investigation of the Effect of Built Orientation on Mechanical Properties and Total Cost of FDM Parts, Procedia Mater. Sci., 2014, 6, p 1625–1630

    Article  Google Scholar 

  27. M. Domingo-Espin, J.M. Puigoriol-Forcada, A.-A. Garcia-Granada, J. Llumà, S. Borros, and G. Reyes, Mechanical Property Characterization and Simulation of Fused Deposition Modeling Polycarbonate Parts, Mater. Des., 2015, 83, p 670–677

    Google Scholar 

  28. J. Lee and A. Huang, Fatigue Analysis of FDM Materials, Rapid Prototyp. J., 2013, 19, p 291–299

    Article  Google Scholar 

  29. S. Ziemian, M. Okwara, and C.W. Ziemian, Tensile and Fatigue Behavior of Layered Acrylonitrile Butadiene Styrene, Rapid Prototyp. J., 2015, 21(3), p 270–278

    Article  Google Scholar 

  30. J. Martínez, J.L. Diéguez, E. Ares, A. Pereira, P. Hernández, and J.A. Pérez, Comparative Between FEM Models for FDM Parts and Their Approach to a Real Mechanical Behaviour, Procedia Eng., 2013, 63, p 878–884

    Article  Google Scholar 

  31. D.L. Goble and E.G. Wolff, Strain-Rate Sensitivity Index of Thermoplastics, J. Mater. Sci., 1993, 28(22), p 5986–5994

    Article  Google Scholar 

  32. J.P.F. Inberg, A. Takens, and R.J. Gaymans, Strain Rate Effects in Polycarbonate and Polycarbonate/ABS Blends, Polymer, 2002, 43(9), p 2795–2802

    Article  Google Scholar 

  33. Z. Wang, Y. Zhou, and P.K. Mallick, Effects of Temperature and Strain Rate on the Tensile Behavior of Short Fiber Reinforced Polyamide-6, Polym. Compos., 2002, 23(5), p 858–871

    Article  Google Scholar 

  34. S. Duan, F. Mo, X. Yang, Y. Tao, D. Wu, and Y. Peng, Experimental and Numerical Investigations of Strain Rate Effects on Mechanical Properties of LGFRP Composite, Compos. Part B: Eng., 2016, 88, p 101–107

    Article  Google Scholar 

  35. M. Schossig, C. Bierögel, W. Grellmann, and T. Mecklenburg, Mechanical Behavior of Glass-Fiber Reinforced Thermoplastic Materials Under High Strain Rates, Polym. Test., 2008, 27(7), p 893–900

    Article  Google Scholar 

  36. C. Ebert, W. Hufenbach, A. Langkamp, and M. Gude, Modelling of Strain Rate Dependent Deformation Behavior of Polypropylene, Polym. Test., 2011, 30(2), p 183–187

    Article  Google Scholar 

  37. L. Peroni, M. Scapin, C. Fichera, D. Lehmhus, J. Weise, J. Baumeister, and M. Avalle, Investigation of the Mechanical Behavior of AISI, 316L Stainless Steel Syntactic Foams at Different Strain-Rates, Compos. Part B: Eng., 2014, 66, p 430–442

    Article  Google Scholar 

  38. M. Sasso, G. Newaz, and D. Amodio, Material Characterization at High Strain Rate by Hopkinson Bar Tests and Finite Element Optimization, Mater. Sci. Eng. A, 2008, 487(1–2), p 289–300

    Article  Google Scholar 

  39. G. Kumaresan and K. Kalaichelvan, Multi-Dome Forming Test for Determining the Strain Rate Sensitivity Index of a Superplastic 7075Al Alloy Sheet, J. Alloy. Compd., 2014, 583, p 226–230

    Article  Google Scholar 

  40. K. Savvakis, M. Petousis, A. Vairis, N. Vidakis, and A. T. Bikmeyev, Experimental determination of the tensile strength of fused deposition modelling parts, in ASME 2014 International Mechanical Engineering Congress & Exposition, Montreal, Quebec, November 8-13, 2014

Download references

Acknowledgments

The authors would like to thank Dr. Mirela Suchea of the TEI of Crete for the SEM images taken of the fracture surfaces.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Vairis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vairis, A., Petousis, M., Vidakis, N. et al. On the Strain Rate Sensitivity of Abs and Abs Plus Fused Deposition Modeling Parts. J. of Materi Eng and Perform 25, 3558–3565 (2016). https://doi.org/10.1007/s11665-016-2198-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2198-x

Keywords

Navigation