Skip to main content

Advertisement

Log in

Production and Precipitation Hardening of Beta-Type Ti-35Nb-10Cu Alloy Foam for Implant Applications

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, beta-type Ti-35Nb-10Cu alloy foams were produced by powder metallurgy method for dental implant applications. 35% Nb was added to stabilize the beta-Ti phase with low Young’s modulus. Cu addition enhanced sinterability and gave precipitation hardening capacity to the alloy. Sintered specimens were precipitation hardened in order to enhance the mechanical properties. Electrochemical corrosion behavior of the specimens was examined by electrochemical impedance spectroscopy in artificial saliva. Electrochemical impedance spectroscopy results indicated that the oxide film on the surface of foam is a bi-layer structure consisting of outer porous layer and inner barrier layer. Impedance values of barrier layer were higher than porous layer. Corrosion resistance of specimens decreased at high fluoride concentrations and at low pH of artificial saliva. Corrosion resistance of alloys was slightly decreased with aging. Mechanical properties, microstructure, and surface roughness of the specimens were also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, and H.N.G. Wadley, Metal Foams: A Design Guide, Elsevier Science, Boston, 2000

    Google Scholar 

  2. L.J. Gibson and M.F. Ashby, Cellular Solids-Structures and Properties, 2nd ed., Cambridge University Press, Cambridge, 1997

    Book  Google Scholar 

  3. N. Wenjuan, B. Chenguang, Q. GuiBao, and W. Qiang, Processing and Properties of Porous Titanium Using Space Holder Technique, Mater. Sci. Eng. A, 2009, 506, p 148–151

    Article  Google Scholar 

  4. I. Mutlu and E. Oktay, Characterization of 17-4 PH Stainless Steel Foam for Biomedical Applications in Simulated Body Fluid and Artificial Saliva, Mater. Sci. Eng. C, 2013, 33, p 1125–1131

    Article  Google Scholar 

  5. L.J. Gibson, Biomechanics of Cellular Solids, J. Biomech., 2005, 38, p 377–399

    Article  Google Scholar 

  6. J.G. Lin, Y.C. Li, C.S. Wong, P.D. Hodgson, and C.E. Wen, Degradation of the Strength of Porous Titanium After Alkali and Heat Treatment, J. Alloy Compd., 2009, 485, p 316–319

    Article  Google Scholar 

  7. J. Huang, H. Xing, and J. Sun, Structural Stability and Generalized Stacking Fault Energies in β Ti–Nb Alloys: Relation to Dislocation Properties, Scripta Mater., 2012, 66, p 682–685

    Article  Google Scholar 

  8. Q. Wei, L. Wang, Y. Fu, J. Qin, W. Lu, and D. Zhang, Influence of Oxygen Content on Microstructure and Mechanical Properties of Ti-Nb-Ta-Zr Alloy, Mater. Des., 2011, 32, p 2934–2939

    Article  Google Scholar 

  9. S.A. Souza, R.B. Manicardi, P.L. Ferrandini, C.R.M. Afonso, A.J. Ramirez, and R. Caram, Effect of the Addition of Ta on Microstructure and Properties of Ti–Nb Alloys, J. Alloy Compd., 2010, 504, p 330–340

    Article  Google Scholar 

  10. D.C. Zhang, Y.F. Mao, Y.L. Li, J.J. Li, M. Yuan, and J.G. Lin, Effect of Ternary Alloying Elements on Microstructure and Superelastictity of Ti-Nb Alloys, Mater. Sci. Eng. A, 2013, 559, p 706–710

    Article  Google Scholar 

  11. E.S.N. Lopes, A. Cremasco, C.R.M. Afonso, and R. Caram, Effects of Double Aging Heat Treatment on the Microstructure, Vickers Hardness and Elastic Modulus of Ti-Nb Alloys, Mater. Charact., 2011, 62, p 673–680

    Article  Google Scholar 

  12. Z.C. Zhou, J.Y. Xiong, S.Y. Gu, D.K. Yang, Y.J. Yan, and J. Du, Anelastic Relaxation Caused by Interstitial Atoms in β-type Sintered Ti–Nb Alloys, J. Alloy Compd., 2011, 509, p 7356–7360

    Article  Google Scholar 

  13. W. Xiao-jun, Effects of Alkali and Heat Treatment on Strength of Porous Ti35Nb, Trans. Nonferrous Met. Soc. China, 2011, 21, p 1335–1339

    Article  Google Scholar 

  14. V. Raman, S. Nagarajan, and N. Rajendran, Electrochemical Impedance Spectro-Scopic Characterisation of Passive Film Formed Over Ti-29Nb-13Ta-4.6Zr Alloy, Electrochem. Commun., 2006, 8, p 1309–1314

    Article  Google Scholar 

  15. B.L. Wang, Y.F. Zheng, and L.C. Zhao, Electrochemical Corrosion Behavior of Biomedical Ti-22Nb and Ti-22Nb–6Zr Alloys in Saline Medium, Mater. Corros., 2009, 60(10), p 788–794

    Article  Google Scholar 

  16. A. Cremasco, W.R. Osorio, C.M.A. Freire, A. Garcia, and R. Caram, Electrochemicalcorrosion Behavior of a Ti-35Nb Alloy for Medical Prostheses, Electrochim. Acta, 2008, 53, p 4867–4874

    Article  Google Scholar 

  17. X. Yao, Q.Y. Sun, L. Xiao, and J. Sun, Effect of Ti2Cu Precipitates on Mechanical Behavior of Ti–2.5Cu Alloy Subjected to Different Heat Treatments, J. Alloy Compd., 2009, 484, p 196–202

    Article  Google Scholar 

  18. F.F. Cardoso, A. Cremasco, R.J. Contieri, E.S.N. Lopes, C.R.M. Afonso, and R. Caram, Hexagonal Martensite Decomposition and Phase Precipitation in Ti-Cu Alloys, Mater. Des., 2011, 32, p 4608–4613

    Article  Google Scholar 

  19. T. Luangvaranunt and P. Pripanapong, Pin-On-Disc Wear of Precipitation Hardened Titanium-Copper Alloys Fabricated by Powder Metallurgy, Mater. Trans., 2012, 53(3), p 518–523

    Article  Google Scholar 

  20. T. Shirai, H. Tsuchiya, T. Shimizu, K. Ohtani, Y. Zen, and K. Tomita, Prevention of Pin Tract Infection with Titanium-Copper Alloys, J. Biomed. Mater. Res. B, 2009, 91, p 373–380

    Article  Google Scholar 

  21. I. Gurappa, Characterisation of Different Materials for Corrosion Resistance Under Simulated Body Fluid Conditions, Mater. Charact., 2002, 49, p 73–79

    Article  Google Scholar 

  22. J. Liu, F. Li, C. Liu, H. Wang, B. Ren, K. Yang, and E. Zhang, Effect of Cu Content on the Antibacterial Activity of Titanium-Copper Sintered Alloys, Mater. Sci. Eng. C, 2014, 35, p 392–400

    Article  Google Scholar 

  23. T. Albrektsson and F. Isidor, Consensus Report of Session IV, Proceedings of the First European Workshop on Periodontology, N.P. Lang and T. Karring, Ed., Quintessence, London, 1994, p 365–369

    Google Scholar 

  24. T. Albrektsson and C. Johansson, Osteoinduction, Osteoconduction and Osseointegration, Eur. Spine J., 2001, 10, p 96–101

    Article  Google Scholar 

  25. M. Yoshinari, Y. Oda, T. Kato, and K. Okuda, Influence of Surface Modifications to Titanium on Antibacterial Activity In Vitro, Biomaterials, 2001, 22, p 2043–2048

    Article  Google Scholar 

  26. D. Mareci, R. Chelariu, I. Dan, D.M. Gordin, and T. Gloriant, Corrosion Behaviour of Ti20Mo Alloy in Artificial Saliva, J. Mater. Sci. Mater. Med., 2010, 21, p 2907–2913

    Article  Google Scholar 

  27. M. Sharma, A.V.R. Kumar, N. Singh, N. Adya, and B. Saluja, Electrochemical Corrosion Behavior of Dental/Implant Alloys in Artificial Saliva, J. Mater. Eng. Perform., 2008, 17, p 695–701

    Article  Google Scholar 

  28. W.F. Ho, S.C. Wu, C.W. Lin, and S.K.H.C. Hsu, Electrochemical Behavior of Ti-20Cr-X Alloys in Artificial Saliva Containing Fluoride, J. Appl. Electrochem., 2011, 41, p 337–343

    Article  Google Scholar 

  29. Y. Oshida, C.B. Sellers, K. Mirza, and F. Farzin-Nia, Corrosion of Dental Materials by Dental Treatment Agents, Mater. Sci. Eng. C, 2005, 25, p 343–348

    Article  Google Scholar 

  30. S. Kumar, T.S.N.S. Narayanan, and S.S. Kumar, Influence of Fluoride ion on the Electrochemical Behaviour of β-Ti Alloy for Dental Implant Application, Corros. Sci., 2010, 52, p 1721–1727

    Article  Google Scholar 

  31. F. Xie, X. He, S. Cao, M. Mei, and X. Qu, Influence of Pore Characteristics on Microstructure, Mechanical Properties and Corrosion Resistance of Selective Laser Sintered Porous Ti–Mo Alloys for Biomedical Applications, Electrochim. Acta, 2013, 105, p 121–129

    Article  Google Scholar 

  32. W.R. Osorio, A. Cremasco, P.N. Andrade, A. Garcia, and R. Caram, Electrochemical Behavior of Centrifuged Cast and Heat Treated Ti–Cu Alloys for Medical Applications, Electrochim. Acta, 2010, 55, p 759–770

    Article  Google Scholar 

  33. A. Robin and J.P. Meirelis, Influence of Fluoride Concentration and pH on Corrosion Behavior of Titanium in Artificial Saliva, J. Appl. Electrochem., 2007, 37, p 511–517

    Article  Google Scholar 

  34. J. Fojt, L. Joska, and J. Malek, Corrosion Behaviour of Porous Ti-39Nb Alloy for Biomedical Applications, Corros. Sci., 2013, 71, p 78–83

    Article  Google Scholar 

  35. C. García, F. Martín, P. Tiedra, Y. Blanco, J.M.R. Roman, and M. Aparicio, Electrochemical Reactivation Methods Applied to PM Austenitic Stainless Steels Sintered in Nitrogen-Hydrogen Atmosphere, Corros. Sci., 2008, 50, p 687–697

    Article  Google Scholar 

  36. I. Mutlu, Sinter-Coating Method for the Production of TiN-Coated Titanium Foam for Biomedical Implant Applications, Surf. Coat. Technol., 2013, 232, p 396–402

    Article  Google Scholar 

  37. M. Nakagawa, S. Matsuya, and K. Udoh, Corrosion Behavior of Pure Titanium and Titanium Alloys in Fluoride-Containing Solutions, Dent. Mater. J., 2001, 20(4), p 305–314

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported partially by Scientific Research Projects Coordination Unit of Istanbul University, Project Number 42922.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilven Mutlu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mutlu, I., Yeniyol, S. & Oktay, E. Production and Precipitation Hardening of Beta-Type Ti-35Nb-10Cu Alloy Foam for Implant Applications. J. of Materi Eng and Perform 25, 1586–1593 (2016). https://doi.org/10.1007/s11665-016-1982-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-1982-y

Keywords

Navigation