Skip to main content

Advertisement

Log in

Tribocorrosion Mechanisms of Pure Mg–SiO2 Nano Syntactic Biodegradable Foams Against Bovine Bone in Artificial Saliva Solution

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

In tribo-corrosion systems, the failure occurs due to the combined effect of micro-abrasion and corrosion mechanisms. Magnesium and its alloys as biodegradable materials are being used as temporary implants for bio medical application. Objective of this study is to examine the tribo-corrosion behavior of Mg-2 vol% SiO2 hollow nanospheres in artificial saliva solution (ASS) for different applied voltage ranging from − 500 to 500 mV and applied loads ranging from 10 to 50 N. Wear rate and corrosion rate are recorded from the experiments separately using the tribo-corrosion setup. The tribo-corrosion maps were plotted in voltage-load space to study the wastage maps, mechanisms involved and the synergic effect of abrasion and corrosion in ASS under simulated body conditions. The mechanisms of failure during simulated tests are studied using scanning electron microscopy. The study will be useful in understanding the degradation rate of the pure Mg-2 vol% SiO2 nano syntactic biodegradable foam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

ASS:

Artificial saliva solution

Mg:

Magnesium

SiO2 :

Silicon dioxide

DMD:

Disintegrated melt deposition

SEM:

Scanning electron microscope

Kac :

Total mass loss due to abrasion and corrosion

Ka :

Mass loss due to abrasion

Kc :

Mass loss due to corrosion

PMMA:

Poly (methyl methacrylate)

PLLA:

Poly l lactic acid

References

  1. Peron M, Torgersen J, Berto F (2017) Mg and its alloys for biomedical applications: exploring corrosion and its interplay with mechanical failure. Metals 7:252

    Article  Google Scholar 

  2. Kumar K, Gill RS, Batra U (2018) Challenges and opportunities of biodegradable magnesium alloy implnts. Mater Technol 33:153–172. https://doi.org/10.1080/10667857.2017.1377973

    Article  CAS  Google Scholar 

  3. Radha R, Sreekanth D (2017) Insight of magnesium alloys and composites for orthopedic implant applications—a review. J Magn Alloys 5:286–312

    Article  CAS  Google Scholar 

  4. Sezer N, Evis Z, Kayhan SM, Tahmasebifar A, Ko M (2018) Review of magnesium-based biomaterials and their applications. J Magn Alloys 6:23–43

    Article  CAS  Google Scholar 

  5. Hua N, Chen W, Wang Q, Guo Q, Huang Y, Zhang T (2018) Tribocorrosion behaviors of a biodegradable Mg65Zn30Ca5 bulk metallic glass for potential biomedical implant applications. J Alloys Compd 745:111–120

    Article  CAS  Google Scholar 

  6. Zivic F, Grujovic N, Manivasagam G, Richard C, Landoulsi J, Petrovic V (2014) The potential of magnesium alloys as bioabsorbable/biodegradable implants for biomedical applications. Tribol Ind 36:67–73

    Google Scholar 

  7. Wang Z-X, Chen G-Q, Chen L-Y, Lei Xu, Sheng Lu (2018) Degradation behavior of micro-arc oxidized ZK60 magnesium alloy in a simulated body fluid. Metals 8:724

    Article  Google Scholar 

  8. Yang J, Yanhong XZ, Zhang Y (2018) Tribocorrosion behavior and mechanism of micro-arc oxidation Ca/P coating on nanocrystallized magnesium alloys. Mater Corros 69:749–759

    Article  CAS  Google Scholar 

  9. Manakari V, Kannan S, Parande G, Doddamani M, Columbus S, Vincent S, Gupta M (2020) In-vitro degradation of hollow silica reinforced magnesium syntactic foams in different simulated body fluids for biomedical applications. Metals 10:1583. https://doi.org/10.3390/met10121583

    Article  CAS  Google Scholar 

  10. Manivasagam G, Dhinasekaran D, Rajamanickam A (2010) Biomedical implants: corrosion and its prevention—a review. Recent Pat Corros Sci 2:40–54

    Article  CAS  Google Scholar 

  11. Fang JH, Pan FS, Chen BS, Jiang WU, Ling DO (2011) Friction and wear performances of magnesium alloy against steel under lubrication of rapeseed oil with s-containing additive. Trans Nonferr Metals Soc China 21:2649–2653

    Article  CAS  Google Scholar 

  12. Bao M, Wang X, Yang L, Qin G, Zhang E (2018) Tribocorrosion behavior of ti–cu alloy in hank’s solution for biomedical application. J Bio- Tribo-Corros 4:29

    Article  Google Scholar 

  13. Sadiq K, Black RA, Stack MM (2014) Bio-tribocorrosion mechanisms in orthopaedic devices: mapping the micro-abrasion–corrosion behaviour of a simulated CoCrMo hip replacement in calf serum solution. Wear 316:58–69

    Article  CAS  Google Scholar 

  14. Geringer J, Forest B, Combrade P (2005) Fretting-corrosion of materials used as orthopaedic implants. Wear 259(7–12):943–951

    Article  CAS  Google Scholar 

  15. Zhu D, Liu Y, Gilbert JL (2020) In vitro fretting crevice corrosion damage of CoCrMo alloys in phosphate buffered saline: Debris generation, chemistry and distribution. Acta Biomater 15(114):449–459

    Article  Google Scholar 

  16. Liu Y, Zhu D, Pierre D, Gilbert JL (2019) Fretting initiated crevice corrosion of 316LVM stainless steel in physiological phosphate buffered saline: Potential and cycles to initiation. Acta Biomater 1(97):565–577

    Article  Google Scholar 

  17. Levine DL, Staehle RW (1977) Crevice corrosion in orthopedic implant metals. J Biomed Mater Res 11(4):553–561

    Article  CAS  Google Scholar 

  18. Zhang E, Xu L, Pan F, Yu G, Yang L, Yang K (2009) In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy. Biomaterials 30(8):1512–1523

    Article  Google Scholar 

  19. Marukawa E, Masato T, Takahashi Y, Hatakeyama I, Sata M (2016) Comparison of magnesium alloys and poly-l-lactide screws as degradable implants in canine fracture model. J Biomed Mater Res B 104B:1282–1289

    Article  Google Scholar 

  20. McGhee P, Pai D, Yarmolenko S, Xu Z, Neralla S, Chen Y (2014) Tribological study of magnesium alloys for implant applications. In: Proceedings of the ASME 2014 international mechanical engineering congress and exposition IMECE

  21. Stack MM (2002) Mapping tribo-corrosion processes in dry and in aqueous conditions: some new directions for the new millennium. Tribol Int 35:681–689

    Article  CAS  Google Scholar 

  22. Trinoa LD, Bronze-Uhlea ES, Ramachandran A, Lisboa-Filhoa PN, Mathewc MT, Georgeb A (2018) Titanium surface bio-functionalization using osteogenic peptides: surface chemistry, biocompatibility, corrosion and tribocorrosion aspects. J Mech Behav Biomed Mater 81:26–38

    Article  Google Scholar 

  23. Yan X, Meng J, Gao K, Pang X, Volinsky AA (2019) Tribo-corrosion and albumin attachment of nitrogen ion-implanted CoCrMo alloy during friction onset. J Mater Eng Perform 28:363–371

    Article  CAS  Google Scholar 

  24. Stack MM, Huang W, Wang G, Hodge C (2011) “Some views on the construction of bio-tribo-corrosion maps for titanium alloys in hank’s solution: particle concentration and applied loads effect. Tribol Int 44:1827–1837

    Article  CAS  Google Scholar 

  25. Aydin M, Findik F (2010) Wear properties of magnesium matrix composites reinforced with SiO2 particles. Ind Lubr Tribol 62:232–237

    Article  Google Scholar 

  26. Gupta M, Sharon NML (2011) Magnesium, magnesium alloys and magnesium composites. Wiley, Hoboken

    Book  Google Scholar 

  27. Ceschini L, Dahle A, Gupta M, Jarfors A, Jayalakshmi S, Morri A, Rotundo F, Toschi S, Arvind Singh R (2016) Aluminium and magnesium metal matrix nanocomposites. Springer, Singapore

    Google Scholar 

  28. Yang M, Li C, Zhang Y, Jia D, Zhang X, Hou Y, Shen B, Li R (2018) Microscale bone grinding temperature by dynamic heat flux in nanoparticle jet mist cooling with different particle sizes. Mater Manuf Processes 33:58–68

    Article  CAS  Google Scholar 

  29. Luo C, Ji X, Ji C, Zhang Y, Wang H (2018) Tribocorrosion of Fe-based amorphous coating in simulated body fluids. Lubricants 6:37

    Article  Google Scholar 

  30. Demirci EE, Arslan E, Ezirmik KV, Baran Ö, Totik Y, Efeoglu İ (2013) Investigation of wear, corrosion and tribocorrosion properties of Az91 Mg alloy coated by micro arc oxidation process in the different electrolyte solutions. Thin Solid Films 528:116–122

    Article  CAS  Google Scholar 

  31. Modabber A, Zander D, Zumdick N, Schick D, Kniha K, Möhlhenrich SC, Hölzle F, Goloborodko E (2020) Impact of wound closure on the corrosion rate of biodegradable Mg-Ca-Zn alloys in the oral environment. Materials 13:4226. https://doi.org/10.3390/ma13194226

    Article  CAS  Google Scholar 

  32. Barao VA, Sukotjo C, Mathew MT (2013) Fundamentals of linking tribology and corrosion (tribocorrosion) for medical applications: bio-tribocorrosion. In: Ann R (ed) Tribology for scientists and engineers. Springer, New York, pp 637–655

    Chapter  Google Scholar 

  33. Hayes A, Sharifi S, Stack MM (2015) Micro-abrasion-corrosion maps of 316l stainless steel in artificial saliva. J Bio- and Tribo-Corros 1:15

    Article  Google Scholar 

  34. Stack MM, Rodling J, Mathew MT, Jawan H, Huang W, Park G, Hodge C (2010) Micro-abrasion–corrosion of a Co–Cr/UHMWPE couple in Ringer’s solution: an approach to construction of mechanism and synergism maps for application to bio-implants. Wear 269:376–382

    Article  CAS  Google Scholar 

  35. Mathew MT, Ariza E, Rocha LA, Vaz F, Fernandes AC, Stack MM (2010) Tribocorrosion behavior of TiCxOy thin films in bio-fluids. Electrochemica Acta 56:56

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to BITS Pilani, Dubai campus for supporting the experimental work and American University of Sharjah, for SEM analysis and National University Singapore for material manufacturing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kannan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanan, A., Sozharajan, B., Karthikeyan, R. et al. Tribocorrosion Mechanisms of Pure Mg–SiO2 Nano Syntactic Biodegradable Foams Against Bovine Bone in Artificial Saliva Solution. J Bio Tribo Corros 7, 162 (2021). https://doi.org/10.1007/s40735-021-00594-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-021-00594-5

Keywords

Navigation