Skip to main content
Log in

Influence of Dispersion in Composites of Chopped PAN-Based Carbon Fiber Modified by Dodecyl Ether Carboxylate

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this article, dodecyl ether carboxylate (AECNa) was prepared by dodecanol polyoxyethylene, sodium chloroacetate, and sodium hydroxide and employed as a treatment agent for PAN-based carbon fiber (CF) surface. The results show that the optimum adsorption amount of AECNa modifying CF was determined to be 4.0 mg/g. In addition, the equivalent variation regularity is obtained the CF surface charge properties and its dispersion behavior. The optimal dispersion effect of the short CFs in epoxy matrix is achieved when the surface charges reach the maximum by quantitative measurement using Faraday cup; the surface morphology and wettability are improved depending on the field emission scanning electron microscopy, Thermogravimetry, x-ray photoelectron spectroscopy, and monofilament contact angle testing. Furthermore, the flexural strength and modulus of the treated CF composite were proven to advance by flexural tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D.D.L. Chung, Cement Reinforced with Short Carbon Fibers: A Multifunctional Material, Compos. B, 2000, 31(6), p 511–526

    Article  Google Scholar 

  2. F. Rezaei, R. Yunus, and N.A. Ibrahim, Development of Short-Carbon-Fiber-Reinforced Polypropylene Composite for Car Bonnet, Polym. Plast. Technol. Eng., 2008, 47(4), p 351–357

    Article  Google Scholar 

  3. O. Carneiro and J. Maia, Rheological Behavior of (Short) Carbon Fiber/Thermoplastic Composites. Part I: The Influence of Fiber Type, Processing Conditions and Level of Incorporation, Polym. Compos., 2000, 21(6), p 960–969

    Article  Google Scholar 

  4. J. Wen, Z. Xia, and F. Choy, Damage Detection of Carbon Fiber Reinforced Polymer Composites Via Electrical Resistance Measurement, Compos. B, 2011, 42(1), p 77–86

    Article  Google Scholar 

  5. C. Wang, K.Z. Li, H.J. Li, G.S. Jiao, J. Lu, and D.S. Hou, Effect of Carbon Fiber Dispersion on the Mechanical Properties of Carbon Fiber-Reinforced Cement-Based Composites, Mater. Sci. Eng. A, 2008, 487(1–2), p 52–57

    Article  Google Scholar 

  6. J. Zhao, J. Hu, and Y. Liang, Study on Carbon Fiber Surface Characteristics and Its Dispersion in Water, China Pulp Paper, 2008, 27(5), p 15–18 (in Chinese)

    Google Scholar 

  7. J.M. Park, Z.J. Wang, D.J. Kwon, G.Y. Gu, W.I. Lee, J.K. Park, and K.L. Devries, Optimum Dispersion Conditions and Interfacial Modification of Carbon Fiber and CNT-Phenolic Composites by Atmospheric Pressure Plasma Treatment, Compos. B, 2012, 43(5), p 2272–2278

    Article  Google Scholar 

  8. Y. Yang, Methods Study on Dispersion of Fibers in CFRC, Cem. Concr. Res., 2002, 32, p 747–750

    Article  Google Scholar 

  9. M. Choi, B. Jeon, and I. Chung, The Effect of Coupling Agent on Electrical and Mechanical Properties of Carbon Fiber/Phenolic Resin Composites, Polymer, 2000, 41(9), p 3243–3252

    Article  Google Scholar 

  10. Z. Li, S. Wu, Z. Zhao, and L. Xu, Influence of Surface Properties on the Interfacial Adhesion in Carbon Fiber/Epoxy Composites, Surf. Interface Anal., 2014, 46(1), p 16–23

    Article  Google Scholar 

  11. C. Van Oss and P. Costanzo, Adhesion of Anionic Surfactants to Polymer Surfaces and Low-Energy Materials, J. Adhes. Sci. Technol., 1992, 6(4), p 477–487

    Article  Google Scholar 

  12. E. Manev and R. Pugh, Diffuse Layer Electrostatic Potential and Stability of Thin Aqueous Films Containing a Nonionic Surfactant, Langmuir, 1991, 7(10), p 2253–2260

    Article  Google Scholar 

  13. Y.K. Li, F.L. Zhao, and Y.F. Wang, Synthesis of Alkyl Phenol Polyoxyethylene Ether Carboxylate with Acetone as Solvent, Acta Petrol. Sin. Pet. Process Sect., 2003, 19(2), p 33–38

    Google Scholar 

  14. S.Y. Chen, Q.F. Hou, G.Q. Jian, Y.Y. Zhu, Y.S. Luo, Z. Wang, and W.J. Li, Synthesis and Performance Evaluation of Novel Alcohol Ether Carboxylate Surfactants for Alkali-Surfactant-Polymer Flooding, Int. J. Oil Gas Coal Technol., 2014, 7(1), p 52–67

    Article  Google Scholar 

  15. C. Kaynak, O. Orgun, and T. Tincer, Matrix and Interface Modification of Short Carbon Fiber-Reinforced Epoxy, Polym. Test., 2005, 24(4), p 455–462

    Article  Google Scholar 

  16. H.J. Zo, S.H. Joo, T. Kim, S.S. Pan, H.K. Jin, and J.S. Park, Enhanced Mechanical and Thermal Properties of Carbon Fiber Composites with Polyamide and Thermoplastic Polyurethane Blends, Fiber Polym., 2014, 15(5), p 1071–1077

    Article  Google Scholar 

  17. J.M. Hofste and M. Kersten, Surface Charges in Blending Short Fibres with Polyethylene Powder, J. Electrostat., 1998, 45(1), p 69–78

    Article  Google Scholar 

  18. Y.E. Krasik, A. Dunaevsky, and J. Felsteiner, Intense Electron Emission from Carbon Fiber Cathodes, Eur. Phys. J. D, 2001, 15(3), p 345–348

    Article  Google Scholar 

  19. S. Qin, M.P. Bradley, P.L. Kellerman, and K. Saadatmand, Measurements of Secondary Electron Emission and Plasma Density Enhancement for Plasma Exposed Surfaces Using an Optically Isolated Faraday Cup, Rev. Sci. Instrum., 2002, 73(3), p 1153–1156

    Article  Google Scholar 

  20. Z.Q. Zhao and X.L. Chen, The Technology Application of the Conductive and Antistatic Polymer Materials, China Textile & Apparel Press, Beijing, 2006, p 165–210

    Google Scholar 

  21. C.Y. Huang, W.W. Mo, and M.L. Roan, Studies on the Influence of Double-Layer Electroless Metal Deposition on the Electromagnetic Interference Shielding Effectiveness of Carbon Fiber/ABS Composites, Surf. Coat. Technol., 2004, 184, p 163–169

    Article  Google Scholar 

  22. H. Uchikawa, S. Hanehara, and D. Sawaki, The Role of Steric Repulsive Force in the Dispersion of Cement Particles in Fresh Paste Prepared with Organic Admixture, Cem. Concr. Res., 1997, 27, p 37–50

    Article  Google Scholar 

  23. W. Kempiński, D. Markowski, M. Kempiński, and M. Śliwińska-Bartkowiak, Charge Carrier Transport Control in Activated Carbon Fibers, Carbon, 2013, 57(6), p 533–536

    Article  Google Scholar 

  24. N. Di Blasi, O. Di Briguglio, and V. Antonucci, Charge-Discharge Performance of Carbon Fiber–Based Electrodes in Single Cell and Short Stack for Vanadium Redox Flow Battery, Appl. Energy, 2014, 125(2), p 114–122

    Article  Google Scholar 

  25. Z. Xu, Y. Huang, C. Zhang, L. Liu, Y. Zhang, and L. Wang, Effect of γ-Ray Irradiation Grafting on the Carbon Fibers and Interfacial Adhesion of Epoxy Composites, Compos. Sci. Technol., 2007, 67, p 3261–3270

    Article  Google Scholar 

  26. F. Vautard, P. Fioux, L. Vidal, J. Schultz, M. Nardin, and B. Defoort, Influence of the Carbon Fiber Surface Properties on Interfacial Adhesion in Carbon Fiber-Acrylate Composites Cured by Electron Beam, Compos. A, 2011, 42(7), p 859–867

    Article  Google Scholar 

  27. W. Song, A. Gu, G. Liang, and L. Yuan, Effect of the Surface Roughness on Interfacial Properties of Carbon Fibers Reinforced Epoxy Resin Composites, Appl. Surf. Sci., 2011, 257(9), p 4069–4074

    Article  Google Scholar 

  28. N. Dumitrascu and C. Borcia, Determining the Contact Angle Between Liquids and Cylindrical Surfaces, J. Colloid Interface Sci., 2006, 294(2), p 418–422

    Article  Google Scholar 

  29. Q. Peng, Y. Li, X. He, H. Lv, P. Hu, Y. Shang, C. Wang, R. Wang, T. Sritharan, and S. Du, Interfacial Enhancement Of Carbon Fiber Composites by Poly (Amido Amine) Functionalization, Compos. Sci. Technol., 2013, 74(4), p 37–42

    Article  Google Scholar 

  30. Z. Dai, F. Shi, B. Zhang, M. Li, and Z. Zhang, Effect of Sizing on Carbon Fiber Surface Properties and Fibers/Epoxy Interfacial Adhesion, Appl. Surf. Sci., 2011, 257, p 6980–6985

    Article  Google Scholar 

  31. H.H. Song, H.J. Oh, H.C. Lee, and S.S. Kim, The Effect of Post-Processing of Carbon Fibers on the Mechanical Properties of Epoxy-Based Composites, Compos. B, 2013, 45(1), p 172–177

    Article  Google Scholar 

  32. R. Zhang, Y. Huang, L. Liu, Y. Tang, D. Su, and L. Xu, Effect of Emulsifier Content of Sizing Agent on the Surface of Carbon Fibres and Interface of Its Composites, Appl. Surf. Sci., 2011, 257(8), p 3519–3523

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20121201110002. The authors thank Tianjin Polytechnic University for Textile Auxiliary Co., Ltd. for the material support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, B., Zheng, G., Liu, Y.J. et al. Influence of Dispersion in Composites of Chopped PAN-Based Carbon Fiber Modified by Dodecyl Ether Carboxylate. J. of Materi Eng and Perform 25, 831–838 (2016). https://doi.org/10.1007/s11665-016-1915-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-1915-9

Keywords

Navigation