Skip to main content
Log in

Hot Ductility of the 17-4 PH Stainless Steels

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The mechanisms of loss of hot ductility and the mechanical behavior of 17-4 PH alloys were investigated using hot tensile testing at temperatures between 700 and 1100 °C and strain rates of 10−4, 10−2, and 10−1 s−1. Scanning electron microscopy was used in conjunction with the results of the tensile tests to find the temperature region of loss of ductility and correlate it with cracking observed during processing by hot upsetting prior to ring rolling. It is reported that 17-4 PH alloys lose ductility in a temperature range around 900 °C near to the duplex austenite + ferrite phase field. Furthermore, it is found that niobium carbides precipitated at austenite/ferrite interfaces and grain boundaries have a pronounced effect on the mechanical behavior of the alloy during high-temperature deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Mirzadeh, A. Najafizadeh, and M. Moazeny, Flow Curve Analysis of 17-4 PH Stainless Steel Under Hot Compression Test, Metall. Mater. Trans., 2009, 40, p 2950–2958

    Article  Google Scholar 

  2. H. Mirzadeh and A. Najafizadeh, The Rate of Dynamic Recrystallization in 17-4 PH Stainless Steel, Mater. Des., 2010, 31, p 4577–4583

    Article  Google Scholar 

  3. M. Yazdani, S.M. Abbasi, A. Momeni, and A. KarimiTaheri, Hot Ductility of a Fe–Ni–Co Alloy In Cast and Wrought Conditions, Mater. Des., 2011, 32, p 2956–2962

    Article  Google Scholar 

  4. I. Mejía, A. Bedolla-Jacuinde, C. Maldonado, and J.M. Cabrera, Hot Ductility Behavior of a Low Carbon Advanced High Strength Steel (AHSS) Microalloyed with boron, Mater. Sci. Eng. A, 2011, 528, p 4468–4474

    Article  Google Scholar 

  5. F. Equihua-Guillen and A. Salinas-Rodriguez, Role of the austenite-ferrite transformation start temperature on the high-temperature ductility of electrical steels, J. Mater. Eng. Perform., 2011, 20(1), p 102–107

    Article  Google Scholar 

  6. K.R. Carpenter, R. Dippenaar, and C.R. Killmore, Hot Ductility of Nb- and Ti-Bearing Microalloyed Steels and the Influence of Thermal history, Metall. Mater. Trans., 2009, 40, p 573–580

    Article  Google Scholar 

  7. G.I.S.L. Cardoso and S. Yue. Hot Ductility of Three Low Carbon Steels in Continuously Cast Slabs. Iron and Steel Society, Inc, p. 585–593, 1990.

  8. J. Wang, H. Zou, C. Li, S. Qiu, and B. Shen, The Spinodal Decomposition in 17-4PH Stainless Steel Subjected to Long-Term Aging at 350ºC, Mater. Charact., 2008, 59, p 587–591

    Article  Google Scholar 

  9. J. Calvo, J.M. Cabrera, and J.M. Prado, Ductilidad en caliente y mecanismos de fractura de un acero de construcción, Rev. Metal., 2006, 42(1), p 11–17

    Article  Google Scholar 

  10. R. Abushosha, S. Ayyad, and B. Mintz, Influence of Cooling Rate on Hot Ductility of C-Mn-Al and C-Mn-Nb-Al Steels, Mater. Sci. Technol., 1998, 14, p 346–351

    Article  Google Scholar 

  11. E.O. García-Sánchez, E.A. Treviño-Luna, A. Salinas-Rodríguez, and L.A. Leduc-Lezama, Mecanismos de fractura a alta temperatura en aceros eléctricos no-orientados, Rev. Metal. Madrid, 2007, 43(4), p 272–277

    Article  Google Scholar 

  12. S. Serejzadeh and A. KarimiTaheri, An Investigation on the Effect of Carbon and Silicon on Flow Behavior of Steel, Mater. Des., 2002, 23, p 271–276

    Article  Google Scholar 

  13. K. Banks, A. Koursaris, F. Verdoorn, and A. Tuling, Precipitation and Hot Ductility of low C-V and Low C-V-Nb Microalloyes Steels During Thin Slab Casting, Mater. Sci. Technol., 2001, 17, p 1596–1604

    Article  Google Scholar 

  14. H. Matsuoka, K. Osawa, M. Ono, and M. Ohmura, Influence of Cu and Sn on Hot Ductility of Steels with Various C Content, ISIJ Int., 1997, 37(3), p 255–262

    Article  Google Scholar 

  15. B. Mintz, A. Tuling, and A. Delgado, Influence of Silicon, Aluminum, Phosphorus and Boron on Hot Ductility of Transformation Induced Plasticity Assisted Steels, Mater. Sci. Technol., 2003, 19, p 1721–1726

    Article  Google Scholar 

  16. B. Mintz, A. Cowley, C. Talian, D.N. Crowther, and R. Abushosha, Influence of P on Hot Ductility of High C, Al, and Nb Containing Steels, Mater. Sci. Technol., 2003, 19, p 184–188

    Article  Google Scholar 

  17. K.W. Andrews, J. Iron Steel Inst., 1965, 203, p 721

    Google Scholar 

  18. B. Mintz, S. Yue, and J.J. Jonas, Hot Ductility of Steels and Its Relationship to the Problem of Transverse Cracking During Continuous Casting, Int. Mater. Rev., 1991, 36(5), p 187–217

    Article  Google Scholar 

  19. S. Nemat-Nasser, W.-G. Guo, and D.P. Kihl, Thermomechanical Response of AL-6XN Stainless Steel Over a Wide Range of Strain Rates and Temperatures, J. Mech. Phys. Solids, 2001, 49, p 1823–1846

    Article  Google Scholar 

  20. J. Lewis, J.J. Jonas, and B. Mintz, The Formation of Deformation Induced Ferrite During Mechanical Testing, ISIJ Int., 1998, 38(3), p 300–309

    Article  Google Scholar 

  21. S.K. Kim, J.S. Kim, and N.J. Kim, Effect of Boron on the Hot Ductility of Nb-Containing Steel, Metall. Mater. Trans, 2002, 33A, p 701–704

    Article  Google Scholar 

  22. S.C. Seo, H.J. Kim, B.H. Park, K.S. Son, S.K. Lee, S.B. Kang, and D. Kim, Effect of Low-Cycle Fatigue on the Hot Ductility of Plain Carbon Steel, Metal. Mater. Int., 2006, 12(3), p 273–277

    Article  Google Scholar 

  23. N.A. Viktorov, Hot Ductility of Steel 08kh18n10t, Met. Sci. Heat Treat., 2011, 53(5–6), p 263–264

    Article  Google Scholar 

  24. C. Yin-li, W. Yan, and Z. Ai-min, Precipitation of AlN and MnS in Low Carbon Aluminium-Killed Steel, J. Iron Steel Res. Int., 2012, 19(4), p 51–56

    Article  Google Scholar 

  25. K.C. Cho, D.J. Munb, Y.M. Koo, and J.S. Lee, Effect of Niobium and Titanium Addition on the Hot Ductility of Boron Containing Steel, Mater. Sci. Eng. A, 2011, 528, p 3556–3561

    Article  Google Scholar 

  26. Y. Maehara, H. Tomono, and Y. Ohmori, Stress Relaxation and Hot Ductility of Steels in Intermittent Tensile Deformation at Temperatures from 700 to 1300 °C, ISIJ Int., 1987, 73(9), p 1170–1177

    Google Scholar 

  27. R. Abushosha, S. Ayyad, and B. Mintz, Influence of Cooling Rate and MnS Inclusions on Hot Ductility of Steels, Mater. Sci Technol., 1998, 14, p 227–235

    Article  Google Scholar 

  28. B. Mintz, Influence of Nitrogen on Hot Ductility of Steels and Its Relationship to Problem of Transverse Cracking, Ironmak. Steelmak., 2000, 27(5), p 343–347

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Garcia Sanchez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrera Lara, V., Guerra Fuentes, L., Covarrubias Alvarado, O. et al. Hot Ductility of the 17-4 PH Stainless Steels. J. of Materi Eng and Perform 25, 1041–1046 (2016). https://doi.org/10.1007/s11665-016-1895-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-1895-9

Keywords

Navigation