Skip to main content
Log in

Influence of Processing Parameters on Grain Size Evolution of a Forged Superalloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The microstructure evolution of nickel-based superalloys has a great influence on the mechanical behavior during service conditions. Microstructure modification and the effect of process variables such as forging temperature, die-speed, and tool heating were evaluated after hot die forging of a heat-resistant nickel-based alloy. Forging sequences in a temperature range from 1253 to 1323 K were considered through experimental trials. An Avrami model was applied using finite element data to evaluate the average grain size and recrystallization at different evolution zones. It was observed that sequential forging at final temperatures below 1273 K provided greater grain refinement through time-dependent recrystallization phenomena. This investigation was aim to explore the influence of forging parameters on grain size evolution in order to design a fully homogenous and refined microstructure after hot die forging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.R. Davis, ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys, ASM International, Materials Park, 2000

    Google Scholar 

  2. P.J. Páramo Kañetas, L.A. Reyes Osorio, M.P. Guerrero Mata, M. De La Garza, V. Páramo López, Influence of the Delta Phase in the Microstructure of the Inconel 718 subjected to “Delta-processing” Heat Treatment and Hot Deformed, International Congress of Science and Technology of Metallurgy and Materials, SAM - CONAMET 2013, Procedia Materials Science, Vol 8, 2015, p 1160–1165.

  3. L. Chamanfar, S.M. Jahazi, M. Asadi, A. Weck, and A.K. Koul, Microstructural Characteristics of Forged and Heat Treated Inconel-718 Disks, Mater. Des., 2013, 52, p 791–800

    Article  Google Scholar 

  4. S.-H. Zhang, H.-Y. Zhang, and M. Cheng, Tensile Deformation and Fracture Characteristics of Delta-Processed Inconel 718 Alloy at Elevated Temperature, Mater. Sci. Eng. A, 2011, 528(19–20), p 6253–6258

    Article  Google Scholar 

  5. A. Niang, B. Viguier, and J. Lacaze, Some features of anisothermal solid-state transformations in alloy 718, Mater Charact, 2010, 61(5), p 525–534

    Article  Google Scholar 

  6. J. De Jaeger, D. Solas, T. Baudin, O. Fandeur, J.-H.Schmitt, et al. Inconel 718 Single and Multipass Modelling of Hot Forging. E.S. Huron, R.C. Reed, M.C. Hardy, M.J. Mills, R.E. montero, P.D. Portella, J.Telesman, Ed., John Wiley & Sons Inc., p 663–672, 2012, Superalloys 2012, TMS (The Minera, metal& material society)

  7. L.A. Reyes, P. Páramo, A. Salas Zamarripa, M. de la Garza, and M.P. Guerrero Mata, Grain Size Modeling of a Ni-Base Superalloy Using Cellular Autómata Algorithm, Mater. Des., 2015, 83, p 301–307

    Google Scholar 

  8. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and Post-dynamic Recrystallization Under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater Sci., 2014, 60, p 130–207

    Article  Google Scholar 

  9. J.P. Thomas, F. Montheillet, S.L. Semiatin, Modeling of Microstructure Evolution During the Thermo-Mechanical Processing of Nickel-Base Superalloys, ASM Handbook 22A (2009) 566–582

  10. M. Tisza, Z. Lukács, and G. Gál, Numerical Modelling of Hot Forming Processes, Int. J. Microstruct. Mater. Prop., 2008, 3(1), p 21–34

    Google Scholar 

  11. X.-M. Chen, Y.C. Lin, D.-X. Wen, J.-L. Zhang, and M. He, Dynamic Recrystallization Behavior of a Typical Nickel-Based Superalloy During Hot Deformation, Mater. Des., 2014, 57, p 568–577

    Article  Google Scholar 

  12. Y.C. Lin, D.-X. Wen, J. Deng, G. Liu, and J. Chen, Constitutive Models for High-temperature flow Behaviors of a Ni-Based Superalloy, Mater. Des., 2014, 59, p 115–123

    Article  Google Scholar 

  13. Y.C. Lin, J. Deng, Y.Q. Jiang, D.X. Wen, and G. Liu, Hot Tensile Deformation and Fracture Characteristics of a Typical Ni-Based Superalloy at Elevated Temperature, Mater. Des., 2014, 55, p 949–957

    Article  Google Scholar 

  14. Y.C. Lin, X.-M. Chen, D.-X. Wen, and M.-S. Chen, A Physically-Based Constitutive Model for a Typical Nickel-Based Superalloy, Comput. Mater. Sci., 2014, 83(15), p 282–289

    Article  Google Scholar 

  15. D. Christian and G. Eric, Microstructure Prediction During Incremental Processes for Hot Forming of 718 Alloy, Adv. Mater. Res., 2011, 278, p 186–191

    Article  Google Scholar 

  16. Andrea Agnoli, Marc Bernacki, Roland Logé, Jean-Michel Franchet, Johanne Laigo, and Nathalie Bozzolo, Selective Growth of Low Stored Energy Grains During d Sub-solvus Annealing in the Inconel 718 Nickel-Based Superalloy, Metall. Mater. Trans. A, 2011, 46A, p 4405–4421

    Google Scholar 

  17. H.W. Lee, S.H. Kang, and Y.S. Lee, Prediction of Microstructure Evolution during Hot Forging Using Grain Aggregate Model for Dynamic Recrystallization, Int. J. Precis. Eng. Manuf., 2014, 15(6), p 1055–1062

    Article  Google Scholar 

  18. C. Bos, M.G. Mecozzi, and J. Sietsma, A Microstructure Model for Recrystallisation and Phase Transformation During the Dual-Phase Steel Annealing Cycle, Comput. Mater. Sci., 2010, 48, p 692–699

    Article  Google Scholar 

  19. Y.C. Lin and Wu Xian-Yang, A New Method for Controlling Billet Temperature During Isothermal Die Forging of a Complex Superalloy Casing, J. Mater. Eng. Perform., 2015, 24(9), p 3549–3557

    Article  Google Scholar 

  20. “Standard Test Methods for Determining Average Grain Size” ASTM E112-13, ASTM, 2013.

  21. J.M. Zhang, Z.Y. Gao, J.Y. Zhuang, and Z.Y. Zhong, Grain Growth Model of IN718 During Holding Period After Hot Deformation, J. Mater. Process. Technol., 2000, 101(1-3), p 25–30

    Article  Google Scholar 

  22. S.C. Medeiros, Y.V.R.K. Prasad, W.G. Frazier, and R. Srinivasan, Microstructural Modeling of Metadynamic Recrystallization in Hot Working of IN 718 Superalloy, Mater. Sci. Eng. A, 2000, 293, p 198–207

    Article  Google Scholar 

  23. M. Tisza, Z. Lukács, and G. Gál, Numerical Modelling of Hot Forming Processes, Int. J. Microstruct. Mater. Prop., 2008, 3(1), p 21–34

    Google Scholar 

  24. R. Srinivasan, V. Ramnarayan, U. Deshpande, V. Jain, and I. Weiss, Computer Simulation of the Forging of Fine Grain IN-718 Alloy, Metall. Mater. Trans. A, 1993, 24A, p 2061

    Article  Google Scholar 

  25. J.-L. Chenot, Advanced Numerical methods for F. E. Simulation of Metal Forming Processes, Proceedings of the 10th International Conference on Numerical Methods in Industrial Forming Processes, AIP Conference Proceedings, 2010, 1252, p 27–38.

  26. X.-M. Chen, Y.C. Lin, D.-X. Wen, J.-L. Zhang, and H. Min, Dynamic Recrystallization Behavior of a Typical Nickel-Based Superalloy During Hot Deformation, Mater. Design, 2014, 57, p 568–577

    Article  Google Scholar 

  27. D. Huang, W.T. Wu, D. Lambert, S.L. Semiatin, Computer Simulation of Microstructure Evolution During Hot Forging of Waspaloy and Nickel Alloy 718, Proceedings of Microstructure Modeling and Prediction During Thermomechanical Processing, R. Srinivasan, S.L. Semiatin, A. Beaudoin, S. Fox, Z. Jin, Eds., TMS, 2001, p 137–46.

  28. L.X. Zhou and T.N. Baker, Effects of Dynamic and Metadynamic Recrystallization on Microstructures of Wrought IN 718 Due to Hot Deformation, Mater. Sci. Eng. A., 1995, 196, p 89–95

    Article  Google Scholar 

  29. F. Montheillet, Models of Recrystallization, ASM Handbook, Vol 22A: Fundamentals of Modeling for Metals Processing, ASM International, 2009.

  30. S. Coste, Thèse “Determination des Lois D’évolution Microstructurale de L’alliage 718 Lors du Matriçage,” ENSIACET, 2003, (in French).

  31. J. Uginet, J. Jackson, Alloy 718 Forging Development for Large Land-Based Gas Turbines, Superalloys 718, 625, 706 and Derivatives, TMS, 2005, p 57-67.

  32. N.-K. Park, J.-T. Yeom, Y.-S. Na, I.S. Kim, D.H. Kim, S.J. Choe, Two step forging of Alloy 718, Proceedings of the International Symposium on Superalloys 718, 625, 706 and Various Derivatives, June 15–18, Pittsburgh, USA, TMS, 1997, p 173–82.

Download references

Acknowledgments

The authors acknowledge the financial support provided by the Consejo Nacional de Ciencia y Tecnología CONACYT, Mexico. A special recognition goes to FRISA Forjados S.A. de C.V. for the facilities for carrying out this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Reyes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyes, L.A., Páramo, P., Salas Zamarripa, A. et al. Influence of Processing Parameters on Grain Size Evolution of a Forged Superalloy. J. of Materi Eng and Perform 25, 179–187 (2016). https://doi.org/10.1007/s11665-015-1828-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1828-z

Keywords

Navigation