Skip to main content
Log in

Microstructure Modeling of a Ni-Fe-Based Superalloy During the Rotary Forging Process

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The microstructure evolution of Ni-Fe superalloys has a great influence on the mechanical behavior during service conditions. The rotary forging process offers an alternative to conventional bulk forming processes where the parts can be rotary forged with a fraction of the force commonly needed by conventional forging techniques. In this investigation, a numerical modeling of microstructure evolution for design and optimization of the hot forging operations has been used to manufacture a heat-resistant nickel-based superalloy. An Avrami model was implemented into finite element commercial platform DEFORM 3D to evaluate the average grain size and recrystallization during the rotary forging process. The simulations were carried out considering three initial temperatures, 980, 1000, and 1050 °C, to obtain the microstructure behavior after rotary forging. The final average grain size of one case was validated by comparing with results of previous experimental work of disk forging operation. This investigation was aimed to explore the influence of the rotary forging process on microstructure evolution in order to obtain a homogenous and refined grain size in the final component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. F. Campbell, Manufacturing Technology for Aerospace Structural Materials, Elsevier, Amsterdam, 2006

    Google Scholar 

  2. M. Perrais, A. Burteau, A. Seror, D. Poquillon, and E. Andrieu, Strain Rate and Temperature Effects on Crack Initiation of Direct Aged 718 Alloy, MATEC Web Conf., 2014, 14, p 16005

    Article  Google Scholar 

  3. D. Huber, C. Sommitsch, and M. Stockinger, Comparison Between Microstructure Evolution in IN718 and ATI, Allvac® 718PlusTM—Simulation and Trial Forgings, Adv. Mater. Res., 2011, 278, p 168–173

    Article  Google Scholar 

  4. A. Kocańda, Development of Orbital Forging Processes by Using Marciniak Rocking-Die Solutions, 60 Excellent Inventions in Metal Forming, Springer, Berlin, 2015, p 319–324

    Google Scholar 

  5. X. Han, L. Hua, W. Zhuang, and X. Zhang, Process Design and Control in Cold Rotary Forging of Non-rotary Gear Parts, J. Mater. Process. Technol., 2014, 214(11), p 2402–2416

    Article  Google Scholar 

  6. G. Liu, S.J. Yuan, Z.R. Wang, and D.C. Zhou, Explanation of the Mushroom Effect in the Rotary Forging of a Cylinder, J. Mater. Process. Technol., 2014, 151(1), p 178–182

    Google Scholar 

  7. X. Han and L. Hua, Comparison Between Cold Rotary Forging and Conventional Forging, J. Mech. Sci. Technol., 2009, 23(10), p 2668–2678

    Article  Google Scholar 

  8. Z. Decheng, Y. Shijian, Z.R. Wang, and X. Zhenrui, Defects Caused in Forming Process of Rotary Forged Parts and Their Preventive Methods, J. Mater. Process. Technol., 1992, 32(1), p 471–479

    Article  Google Scholar 

  9. Á. Mangas, M. Santos, J.I. Zarazua, J. San José, G. Atxaga, and O. Adarraga, Sensitivity Analysis to Optimise the Microstructural Properties of an Inconel 718 Component Manufactured by Rotary Forging, Key Eng. Mater., 2013, 554, p 234–247

    Article  Google Scholar 

  10. B. Buchner, A. Weber, and B. Buchmayr, Investigation of Friction in Warm Forging of AA6082, Int. J. Mater. Form., 2008, 1(1), p 1215–1218

    Article  Google Scholar 

  11. D. U. Furrer, and S. L. Semiatin, Forging of Nickel-Base Alloys. ASM Handbook: A Metalworking: Bulk Forming, Vol 14, 2005, p 324–330.

  12. F. Chen, F. Ren, J. Chen, Z. Cui, and H. Ou, Microstructural Modeling and Numerical Simulation of Multi-Physical Fields for Martensitic Stainless Steel During Hot Forging Process of Turbine Blade, Int. J. Adv. Manuf. Technol., 2016, 82(1–4), p 85–98

    Article  Google Scholar 

  13. F. Chen, Z. Cui, and J. Chen, Prediction of Microstructural Evolution During Hot Forging, Manuf. Rev., 2014, 1, p 6

    Google Scholar 

  14. X. Chen, Y. Lin, D. Wen, J. Zhang, and M. He, Dynamic Recrystallization Behavior of a Typical Nickel-Based Superalloy During Hot Deformation, Mater. Des., 2014, 57, p 568–577

    Article  Google Scholar 

  15. A. Rollett, F.J. Humphreys, G.S. Rohrer, and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, Amsterdam, 2004

    Google Scholar 

  16. H.W. Lee, S.H. Kang, and Y. Lee, Prediction of Microstructure Evolution During Hot Forging Using Grain Aggregate Model for Dynamic Recrystallization, Int. J. Precis. Eng. Manuf., 2014, 15(6), p 1055–1062

    Article  Google Scholar 

  17. A. Kermanpur, P.D. Lee, M. McLean, and S. Tin, Integrated Modeling for the Manufacture of Aerospace Discs: Grain Structure Evolution, JOM, 2004, 56(3), p 72–78

    Article  Google Scholar 

  18. S.C. Medeiros, Y.V.R.K. Prasad, W.G. Frazier, and R. Srinivasan, Microstructural Modeling of Metadynamic Recrystallization in Hot Working of IN 718 Superalloy, Mater. Sci. Eng. A, 2000, 293(1), p 198–207

    Article  Google Scholar 

  19. F. Chen, J. Liu, H. Ou, B. Lu, Z. Cui, and H. Long, Flow Characteristics and Intrinsic Workability of IN718 Superalloy, Mater. Sci. Eng. A, 2015, 642, p 279–287

    Article  Google Scholar 

  20. Á. Mangas, M. Santos, J. San José, G. Atxaga, and O. Adarraga, Microstructural Behaviour in Rotary Forging of Inconel 718, Key Eng. Mater., 2012, 504, p 169–174

    Article  Google Scholar 

  21. Z. Yu, Q. Ma, and Z. Lin, Simulation and Analysis of Microstructure Evolution of IN718 in Rotary Forgings by FEM, J. Shanghai Jiaotong Univ., 2008, 13(6), p 721–726

    Article  Google Scholar 

  22. X. Han and L. Hua, Effect of Size of the Cylindrical Workpiece on the Cold Rotary-Forging Process, Mater. Des., 2009, 30(8), p 2802–2812

    Article  Google Scholar 

  23. X. Han and L. Hua, 3D FE Modeling Simulation of Cold Rotary Forging of a Cylinder Workpiece, Mater. Des., 2009, 30(6), p 2133–2142

    Article  Google Scholar 

  24. J. De Jaeger, D. Solas, O. Fandeur, J.H. Schmitt, and C. Rey, 3D Numerical Modeling of Dynamic Recrystallization Under Hot Working: Application to Inconel 718, Mater. Sci. Eng. A, 2015, 646, p 33–44

    Article  Google Scholar 

  25. S.H. Zhang, H.Y. Zhang, and M. Cheng, Tensile Deformation and Fracture Characteristics of Delta-Processed Inconel 718 Alloy at Elevated Temperature, Mater. Sci. Eng. A, 2011, 528, p 6253–6258

    Article  Google Scholar 

  26. A. Niang, B. Viguier, and J. Lacaze, Some Features of Anisothermal Solid-State Transformations in Alloy 718, Mater. Charact., 2011, 61, p 525–534

    Article  Google Scholar 

  27. J. De Jaeger, D. Solas, T. Baudin, O. Fandeur and J.H. Schmitt, Inconel 718 Single and Multipass Modelling of Hot Forging, Superalloys 2012, E.S. Huron, R.C. Reed, M.C. Hardy, M.J. Mills, R.E. montero, P.D. Portella, J.Telesman, Ed., Wiley, p 663–672, 2012, TMS (The Minera, metal& material society).

  28. X. Han and L. Hua, 3D FE Modeling of Cold Rotary Forging of a Ring Workpiece, J. Mater. Process. Technol., 2009, 209(12–13), p 5353–5362

    Article  Google Scholar 

  29. X. Deng, L. Hua, and X. Han, Numerical and Experimental Investigation of Cold Rotary Forging of a 20CrMnTi Alloy Spur Bevel Gear, Mater. Des., 2011, 32(3), p 1376–1389

    Article  Google Scholar 

  30. L. Filice, D. Umbrello, F. Micari and L. Settineri, On the finite element simulation of thermal phenomena in machining processes, Advanced Methods in Material Forming, Springer, Berlin, 2007, p 263–278.

  31. K. Subramanian and H.P. Cherukuri, Prediction of Microstructure Evolution During Multi-Stand Shape Rolling Of Nickel-Base Superalloys, Integr. Mater. Manuf. Innov., 2014, 3(1), p 1–24

    Article  Google Scholar 

  32. J.P. Thomas, F. Montheillet, and S.L. Semiatin, Modeling of Microstructure Evolution During the Thermo-Mechanical Processing of Nickel-Base Superalloys, ASM Handbook, 2009, 22A, p 566–582

    Google Scholar 

  33. C.M. Sellars, The Kinetics of Softening Processes During Hot Working of Austenite, Czech J. Phys., 1985, 35, p 239–248

    Article  Google Scholar 

  34. D. Huang, W.T. Wu, D. Lambert and S.L. Semiatin, Computer Simulation of Microstructure Evolution During Hot Forging of Waspaloy and Nickel Alloy 718, Proceedings of Microstructure Modeling and Prediction During Thermomechanical Processing, R. Srinivasan, S.L. Semiatin, A. Beaudoin, S. Fox, Z. Jin, Eds., TMS, 2001, p 137–46.

  35. L. Reyes, P. Páramo, A. Salas, M. Zamarripa, M. de la Garza, and M. Guerrero-Mata MP, Influence of Processing Parameters on Grain Size Evolution of a Forged Superalloy, J. Mater. Eng. Perform., 2015, 25(1), p 179–187

    Article  Google Scholar 

  36. G. Shen, J. Rollins, and D. Furrer, Microstructure modeling of forged waspaloy discs, SUPERALLOYS 1996, R.D. Kissinger, Ed., TMS, Warrendale, 1996, p 613–620

    Google Scholar 

  37. Q. Ma, Z.Q. Lin, and Z.Q. Yu, Prediction of Deformation Behavior and Microstructure Evolution in Heavy Forging by FEM, Int. J. Adv. Manuf. Technol., 2009, 40(3–4), p 253–260

    Article  Google Scholar 

  38. Altan, G. Ngaile and G. Shen, Cold and hot forging: fundamentals and applications ASM Handbook 1, 2005, p 60–81

  39. J.M. Zhang and Z.Y. Gao, Grain growth model of IN718 during holding period after hot deformation, Mater. Sci. Eng. A, 2000, 101, p 25–30

    Article  Google Scholar 

  40. J.P. Domblesky and R. Shivpuri, Grain Size Modeling and Optimization of Rotary Forged Alloy 718, J. Eng. Mater. Technol., 1997, 119(2), p 133–137

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Programa para el Desarrollo Profesional Docente (PROMEP) for the financial support of the PROMEP DSA/103.5/14/10813 project; “Modelación numérica de las propiedades físicas y mecánicas de anillos en aleaciones níquel cromo aplicados en investigaciones aeronáuticas.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Loyda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loyda, A., Hernández-Muñoz, G.M., Reyes, L.A. et al. Microstructure Modeling of a Ni-Fe-Based Superalloy During the Rotary Forging Process. J. of Materi Eng and Perform 25, 2128–2137 (2016). https://doi.org/10.1007/s11665-016-2104-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2104-6

Keywords

Navigation