Skip to main content
Log in

Softening Behavior of a Cold Rolled High-Mn Twinning-Induced Plasticity Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present study deals with the static and dynamic microstructural evolution of a high-Mn twinning-induced plasticity steel. Static recrystallization (SRX) is considered through cold rolling followed by annealing with different holding times. Dynamic recrystallization (DRX) was explored by hot compression tests at different temperatures and strain rates. The microstructural observations demonstrated that new grains nucleate at the prior grain boundaries and grain size decreased when cold rolling was followed by annealing. Additionally to the grain size reduction due to the SRX, nucleation sites for DRX increased. It is shown that flow stress level increased as a result of grain refinement caused by static and DRX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Vercammen, B. Blanpain, B.C. De Cooman, and P. Wollants, Cold Rolling Behaviour of an Austenitic Fe–30Mn–3Al–3Si TWIP-Steel: The Importance of Deformation Twinning, Acta Mater., 2004, 52, p 2005–2012

    Article  Google Scholar 

  2. J. Zhang, R. Fu, M. Zhang, R. Liu, X. Wei, and L. Li, Bake Hardening Behavior of TRIP and DP Steels, J. Univ. Sci. Technol. Beijing Miner. Metall. Mater., 2008, 15, p 132–137

    Google Scholar 

  3. A. Mein, G. Fourlaris, D. Crowther, and P. Evans, The Influence of Aluminium on the Ferrite Formation and Microstructural Development in Hot Rolled Dual-Phase Steel, Mater. Charact., 2012, 64, p 69–78

    Article  Google Scholar 

  4. D. Bombac, M. Peet, S. Zenitani, S. Kimura, T. Kurimura, and H. Bhadeshia, An Integrated Hot-Rolling and Microstructure Model for Dual-Phase Steels, Modell. Simul. Mater. Sci. Eng., 2014, 22, p 045005

    Article  Google Scholar 

  5. C. Herrera, D. Ponge, and D. Raabe, Design of a Novel Mn-Based 1GPa Duplex Stainless TRIP Steel with 60% Ductility by a Reduction of Austenite Stability, Acta Mater., 2011, 59, p 4653–4664

    Article  Google Scholar 

  6. J. Zrnik, O. Muransky, O. Stejskal, P. Lukáš, and P. Hornak, Effect of Processing Conditions on Structure Development and Mechanical Response of Si–Mn ‘TRIP’ Steel, Mater. Sci. Eng. A, 2008, 483–484, p 71–75

    Article  Google Scholar 

  7. Z.Y. Tang, D. Hua, L.X. Du, D. Hao, and X. Zhang, Effect of Thermomechanical Processing on Microstructures of TRIP Steel, J. Iron Steel Res. Int., 2007, 14, p 56–60

    Article  Google Scholar 

  8. M.M. Wang, C.C. Tasan, D. Ponge, A. Kostka, and D. Raabe, Smaller is Less Stable: Size Effects on Twinning vs. Transformation of Reverted Austenite in TRIP-Maraging Steels, Acta Mater., 2014, 79, p 268–281

    Article  Google Scholar 

  9. H. Aydin, I.-H. Jung, E. Essadiqi, and S. Yue, Twinning and Tripping in 10% Mn steels, Mater. Sci. Eng. A, 2014, 591, p 90–96

    Article  Google Scholar 

  10. G. Frommeyer, U. Brüx, and P. Neumann, Supra-Ductile and High-Strength Manganese-TRIP/TWIP Steels for High Energy Absorption Purposes, ISIJ Int., 2003, 43, p 438–446

    Article  Google Scholar 

  11. M. Eskandari, A. Zarei-Hanzaki, and A. Marandi, An Investigation Into the Mechanical Behavior of a New Transformation-Twinning Induced Plasticity Steel, Mater. Des., 2012, 39, p 279–284

    Article  Google Scholar 

  12. O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer, High Strength Fe–Mn–(Al, Si) TRIP/TWIP Steels Development- Properties- Application, Int. J. Plast., 2000, 16, p 1391–1409

    Article  Google Scholar 

  13. A. Imandoust, A. Zarei-Hanzaki, S. Heshmati-Manesh, S. Moemeni, and P. Changizian, Effects of Ferrite Volume Fraction on the Tensile Deformation Characteristics of Dual Phase Twinning Induced Plasticity Steel, Mater. Des., 2014, 53, p 99–105

    Article  Google Scholar 

  14. A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck, Derivation and Variation in Composition-Dependent Stacking Fault Energy Maps Based on Subregular Solution Model in High-Manganese Steels, Metall. Mater. Trans. A, 2009, 40, p 3076–3090

    Article  Google Scholar 

  15. R. Umino, X.J. Liu, Y. Sutou, C.P. Wang, I. Ohnuma, R. Kainuma, and K. Ishida, Experimental Determination and Thermodynamic Calculation of Phase Equilibria in the Fe−Mn−Al System, J. Phase Equilib. Diffus., 2006, 27, p 54–62

    Article  Google Scholar 

  16. A.S. Hamada, Manufacturing, Mechanical Properties and Corrosion of High-Mn Twip Steels, Acta Univ. Ouluensis C, 2007, 281, p 1–51

    Google Scholar 

  17. F.J. Humphrey and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, New York, 2004

    Google Scholar 

  18. P.J. Brofman and G.S. Ansell, On the Effect of Carbon on the Stacking Fault Energy of Austenitic Stainless Steels, Metall. Trans. A, 1978, 9, p 879–880

    Article  Google Scholar 

  19. W.S. Yang and C.M. Wan, The Influence of Aluminium Content to the Stacking Fault Energy in Fe-Mn-Al-C Alloy System, J. Mater. Sci., 1990, 25, p 1821–1823

    Article  Google Scholar 

  20. L. Rémy, A. Pineau, and B. Thomas, Temperature Dependence of Stacking Fault Energy in Close-Packed Metals and Alloys, Mater. Sci. Eng., 1978, 36, p 47–63

    Article  Google Scholar 

  21. O. Grässel, G. Frommeyer, C. Derder, and H. Hofmann, Phase Transformations and Mechanical Properties of Fe-Mn-Si-Al TRIP-Steels, Le Journal de Physique IV, 1997, 07, p 383–388

    Google Scholar 

  22. V. Torabinejad, A. Zarei-Hanzaki, S. Moemeni, and A. Imandoust, An Investigation to the Microstructural Evolution of Fe–29Mn–5Al Dual-Phase Twinning-Induced Plasticity Steel Through Annealing, Mater. Des., 2011, 32, p 5015–5021

    Article  Google Scholar 

  23. O. Kwon and A. Deardo, Interactions Between Recrystallization and Precipitation in Hot-Deformed Microalloyed Steels, Acta metallurgica et materialia, 1991, 39, p 529–538

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Dastranjy Nezhadfar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dastranjy Nezhadfar, P., Rezaeian, A. & Sojudi Papkiadeh, M. Softening Behavior of a Cold Rolled High-Mn Twinning-Induced Plasticity Steel. J. of Materi Eng and Perform 24, 3820–3825 (2015). https://doi.org/10.1007/s11665-015-1658-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1658-z

Keywords

Navigation