Skip to main content

Advertisement

Log in

Hot Workability Analysis and Development of a Processing Map for Homogenized 6069 Al Alloy Cast Ingot

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The hot workability of homogenized 6069 Al alloy cast ingot was examined via hot compression tests. These tests were conducted using Gleeble-3500 thermal simulation machine within a temperature range of 300-550 °C and a strain rate range of 0.001-10 s−1. The compression data were then used to construct a processing map, through which a safe processing region was identified. The safe processing region could be divided into dynamic recovery and dynamic recrystallization domains. The variation in microstructure was related to the variation in efficiency of power dissipation, as indicated by microstructure observations. Dynamic recovery was observed in regions associated with the intermediate efficiency of power dissipation, whereas partial dynamic recrystallization occurred in regions with high efficiency. Flow instability was found to be related to flow localization. The strain rate sensitivity m map showed that flow localization occurred because of the deformation conditions with low m values. The kinetic analysis revealed a decrease in apparent activation energy with increased temperature in the partial dynamic recrystallization region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. H.J. Frost and M.F. Ashby, Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, London, 1982

    Google Scholar 

  2. Y.V.R.K. Prasad and S. Sasidhara, Hot Working Guide—A Compendium of Processing Maps, ASM International, Materials Park, 1997

    Google Scholar 

  3. G.Z. Quan, B.S. Kang, T.W. Ku, and W.J. Song, Identification for the Optimal Working Parameters of Al-Zn-Mg-Cu Alloy with the Processing Maps Based on DMM, Int. J. Adv. Manuf. Technol., 2011, 56, p 1069–1078

    Article  Google Scholar 

  4. E.X. Pu, W.J. Zheng, J.Z. Xiang, Z.G. Song, and J. Li, Hot Deformation Characteristic and Processing Map of Superaustenitic Stainless Steel S32654, Mater. Sci. Eng. A, 2014, 598, p 174–182

    Article  Google Scholar 

  5. I. Balasundar, T. Raghu, and B.P. Kashyap, Modeling the Hot Working Behavior of Near-α Titanium Alloy IMI834, Prog. Nat. Sci., 2013, 23, p 598–607

    Article  Google Scholar 

  6. S.L. Guo, D.F. Li, H.J. Pen, Q.M. Guo, and J. Hu, Hot Deformation and Processing Maps of Inconel 690 Superalloy, J. Nucl. Mater., 2010, 410, p 52–58

    Article  Google Scholar 

  7. S.C. Bergsma, M.E. Kassner, X. Li, M.A. Delos-Reyes, and T.A. Hayes, The Optimized Mechanical Properties of the New Aluminum Alloy AA 6069, J. Mater. Eng. Perform., 1996, 5, p 111–1116

    Article  Google Scholar 

  8. S.C. Bergsma, M.E. Kassner, X. Li, and M.A. Wall, Strengthening in the New Aluminum Alloy AA 6069, Mater. Sci. Eng. A, 1998, 254, p 112–118

    Article  Google Scholar 

  9. F.J. MacMaster, K.S. Chan, S.C. Bergsma, and M.E. Kassner, Aluminum Alloy 6069 Part II: Fracture Toughness of 6061-T6 and 6069-T6, Mater. Sci. Eng. A, 2000, 289, p 54–59

    Article  Google Scholar 

  10. M. Cai, D.P. Field, and G.W. Lorimer, A Systematic Comparison of Static and Dynamic Ageing of Two Al-Mg-Si Alloys, Mater. Sci. Eng. A, 2004, 373, p 65–71

    Article  Google Scholar 

  11. X. Li, M.E. Kassner, and S.C. Bergsma, Recrystallization Behavior of Rolled Ingots of 6061 and 6069 Aluminum Alloys, J. Mater. Eng. Perform., 2000, 9, p 416–423

    Article  Google Scholar 

  12. M.E. Kassner, P. Geantil, and X. Li, A Study of the Quench Sensitivity of 6061-T6 and 6069-T6 Aluminum Alloys, J. Metall., 2011, 2011, p 747198

    Article  Google Scholar 

  13. H.Z. Li, J. Jiang, X.P. Liang, and M. Deng, Hot Deformation Behavior and Microstructure of 6069 Aluminum Alloy, Mater. Sci. Forum, 2014, 788, p 201–207

    Article  Google Scholar 

  14. B. Li, Q.L. Pan, Z.Y. Zhang, and C. Li, Characterization of Flow Behavior and Microstructural Evolution of Al-Zn-Mg-Sc-Zr Alloy using Processing Maps, Mater. Sci. Eng. A, 2012, 556, p 844–848

    Article  Google Scholar 

  15. A. Jenab and A. Karimi, Taheri, Experimental Investigation of the Hot Deformation Behavior of AA7075: Development and Comparison of Flow Localization Parameter and Dynamic Material Model Processing Maps, Int. J. Mech. Sci., 2014, 78, p 97–105

    Article  Google Scholar 

  16. H.Z. Li, H.J. Wang, X.P. Liang, H.T. Liu, Y. Liu, and X.M. Zhang, Hot Deformation and Processing Map of 2519A Aluminum Alloy, Mater. Sci. Eng. A, 2011, 528, p 1548–1552

    Article  Google Scholar 

  17. Y.C. Lin, L.T. Li, Y.C. Xia, and Y.Q. Jiang, Hot Deformation and Processing Map of a Typical Al-Zn-Mg-Cu Alloy, J. Alloys Compd., 2013, 550, p 438–445

    Article  Google Scholar 

  18. G. Meng, B.L. Li, H.M. Li, H. Huang, and Z.R. Nie, Hot Deformation and Processing Maps of an Al-5.7 wt%Mg Alloy with Erbium, Mater. Sci. Eng. A, 2009, 517, p 132–137

    Article  Google Scholar 

  19. B. Chen, X.L. Tian, X.L. Li, and C. Lu, Hot Deformation Behavior and Processing Maps of 2099 Al-Li Alloy, J. Mater. Eng. Perform., 2014, 23, p 1929–1935

    Article  Google Scholar 

  20. M. Rajamuthamilselvan and S. Ramanathan, Hot Deformation Behaviour of 7075 alloy, J. Alloys Compd., 2011, 509, p 948–952

    Article  Google Scholar 

  21. C.M. Cepeda-Jiménez, O.A. Ruano, M. Carsí, and F. Carreño, Study of Hot Deformation of an Al-Cu-Mg Alloy Using Processing Maps and Microstructural Characterization, Mater. Sci. Eng. A, 2012, 552, p 530–539

    Article  Google Scholar 

  22. J. Luo, M.Q. Li, and D.W. Ma, The Deformation Behavior and Processing Maps in the Isothermal Compression of 7A09 Aluminum Alloy, Mater. Sci. Eng. A, 2012, 532, p 548–557

    Article  Google Scholar 

  23. H. Mirzadeh and A. Najafizadeh, Prediction of the Critical Conditions for Initiation of Dynamic Recrystallization, Mater. Des., 2010, 31, p 1174–1179

    Article  Google Scholar 

  24. L.E. Murr and E.V. Esquivel, Observations of Common Microstructural Issues Associated with Dynamic Deformation Phenomena: Twins, Microbands, Grain Size Effects, Shear Bands, and Dynamic Recrystallization, J. Mater. Sci., 2004, 39, p 1153–1168

    Article  Google Scholar 

  25. G.A. Li, L. Zhen, C. Lin, R.S. Gao, X. Tan, and C.Y. Xu, Deformation Localization and Recrystallization in TC4 Alloy Under Impact Condition, Mater. Sci. Eng. A, 2005, 395, p 98–101

    Article  Google Scholar 

  26. Y.B. Xu, Y.L. Bai, and M.A. Meyers, Deformation, Phase Transformation and Recrystallization in the Shear Bands Induced by High-Strain Rate Loading in Titanium and Its Alloys, J. Mater. Sci. Technol., 2006, 2, p 737–744

    Google Scholar 

  27. Y.B. Xu, W.L. Zhong, Y.J. Chen, L.T. Shen, Q. Liu, Y.L. Bai, and M.A. Meyers, Shear Localization and Recrystallization in Dynamic Deformation of 8090 Al–Li Alloy, Mater. Sci. Eng. A, 2001, 299, p 287–295

    Article  Google Scholar 

  28. C. Sellars and W.M. Tegart, On the Mechanism of Hot Deformation, Acta Metall., 1966, 14, p 1136–1138

    Article  Google Scholar 

  29. C. Sellars and W.M. Tegart, Hot Workability, Int. Metall. Rev., 1972, 17, p 1–24

    Google Scholar 

  30. C.H. Liao, H.Y. Wu, S. Lee, F.J. Zhu, H.C. Liu, and C.T. Wu, Strain-Dependent Constitutive Analysis of Extruded AZ61 Mg Alloy Under Hot Compression, Mater. Sci. Eng. A, 2013, 565, p 1–8

    Article  Google Scholar 

  31. H.Y. Wu, J.C. Yang, F.J. Zhu, and C.T. Wu, Hot Compressive Flow Stress Modeling of Homogenized AZ61 Mg Alloy Using Strain-Dependent Constitutive Equations, Mater. Sci. Eng. A, 2013, 574, p 17–24

    Article  Google Scholar 

  32. S.E. Hsu, G.R. Edwards, and O.D. Sherby, Influence of Texture on Dislocation Creep and Grain Boundary Sliding in Fine-Grained Cadmium, Acta Metall., 1983, 31, p 763–772

    Article  Google Scholar 

  33. H.J. McQueen and J.E. Hockett, Microstructures of Aluminum Compressed at Various Rates and Temperatures, Met. Trans., 1970, 1, p 2997–3004

    Google Scholar 

  34. C. Zener and J.H. Hollomon, Effect of Strain Rate upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15, p 22–32

    Article  Google Scholar 

Download references

Acknowledgments

This work was conducted through Grants from Ministry of Science and Technology Taiwan under Contract No. MOST 103-2221-E-216-002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horng-yu Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Fj., Wu, Hy., Lin, Mc. et al. Hot Workability Analysis and Development of a Processing Map for Homogenized 6069 Al Alloy Cast Ingot. J. of Materi Eng and Perform 24, 2051–2059 (2015). https://doi.org/10.1007/s11665-015-1474-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1474-5

Keywords

Navigation