Skip to main content
Log in

Structural, Optical, Electrical, and Dielectric Properties of the Spray-Deposited WO3 Thin Films

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Studies on effect of the substrate temperature on physicochemical properties of WO3 thin films prepared using spray pyrolysis technique have been presented. Raman spectra of the film shows presence of W-O-W network with stretching and bending vibrations which revealed monoclinic structure of WO3 which is confirmed by XRD studies. XPS studies show that films are sub-stoichiometric and O/W ratio is 2.87, with W present in two valence states W+5 and W+6 with ratio of 0.21. Smallest crystallite size (28 nm) is observed for the film deposited at 425 °C, and on either side crystallite size is larger. Optical studies show band gap energy 2.6 eV and NUV, blue and green photo-emissions from WO3 films. Scanning electron micrographs depict wired network of the WO3, and AFM shows rough nature of the films. The thermo-emf is found to be linearly changing with temperature difference and decreases with increase in the substrate temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M. Deepa, D.P. Singh, S.M. Shivaprasad, and S.A. Agnihotry, A Comparison of Electrochromic Properties of Sol-Gel Derived Amorphous and Nanocrystalline Tungsten Oxide Films, Curr. Appl. Phys., 2007, 7, p 220–229

    Article  Google Scholar 

  2. J.M. O-Rueda de Leon, D.R. Acosta, U. Pal, and L. Castaneda, Improving Electrochromic Behavior of Spray Pyrolised WO3 Thin Solid Films by Mo Doping, Electrochim. Acta, 2011, 56, p 2599–2605

    Article  Google Scholar 

  3. S.K. Deb, Opportunities and Challenges in Science and Technology of WO3 for Electrochromic and Related Applications, Sol. Energy Mater. Sol. Cells, 2008, 92, p 245–258

    Article  Google Scholar 

  4. A. Kaushal, N. Choudhary, N. Kaur, and D. Kaur, VO2-WO3 Nanocomposite Thin Films Ynthesized by Pulsed Laser Deposition Technique, App. Surf. Sci., 2011, 257, p 8937–8944

    Article  Google Scholar 

  5. C.W. Lai, and S. Sreekantan, Preparation of Hybrid WO3-TiO2 Nanotube Photoelectrodes Using Anodization and Wet Impregnation: Improved Water-Splitting Hydrogen Generation Performance, Int. J. Hydrogen Energy, 2013, 38, 2156–2166

    Google Scholar 

  6. D.S. Lee, K.H. Nam, and D.D. Lee, Effect of Substrate on NO2 Sensing Properties of WO3 Thin Film Gas Sensors, Thin Solid Films, 2000, 375, p 142–146

    Article  Google Scholar 

  7. M.N. Spallart and S.B. Sadale, Photoelectrocatalysis with Drop-Cast Tungsten Trioxide Films, J. New Mater. Electrochem. Syst., 2010, 13, p 127–131

    Google Scholar 

  8. G. Wang, Y. Ji, R. Huang, Q. Yang, P. Gouma, and M. Dudley, Fabrication and Characterization of Polycrystalline WO3 Nanofibers and Their Application for Ammonia Sensing, J. Phys. Chem. B 110 (2006), p 23777–23782

    Google Scholar 

  9. G. Shaw, I.P. Parkin, K.F.E. Pratt, and D.E. Williams, Control of Semiconducting Oxide Gas-Sensor Microstructure by Application of an Electric Field During AEROSOL-ASSISTED CHEMICAL VAPOUR DEPOSITION, J. Mater. Chem., 2005, 15, p 149–154

    Article  Google Scholar 

  10. M. Akiyama, J. Tamaki, N. Miura, and N. Yamazoe, Tungsten Oxide-Based Semiconductor Sensor Highly Sensitive to NO and NO2, Chem. Lett., 1991, 20, p 1611–1614

    Article  Google Scholar 

  11. J. Shieh, H.M. Feng, M.H. Hon, and H.Y. Juang, WO3 and W-Ti-O Thin-Film Gas Sensor Prepared by Sol-Gel Dip-Coasting, Sensors Actuators B, 2002, 86, p 75–80

    Article  Google Scholar 

  12. A.A. Tomchenko, G.P. Harmer, B.T. Marquis, and J.W. Allen, Semiconducting Metal Oxide Sensor Array for the Selective Detection of Combustion Gases, Sensors Actuators B, 2003, 93, p 126–134

    Article  Google Scholar 

  13. C.S. Blackman and I.P. Parkin, Atmospheric Pressure Chemical Vapor Deposition of Crystalline Monoclinic WO3 and WO3-x Thin Films from Reaction of WCl6 with O-Containing Solvents and Their Photochromic and Electrochromic Properties, Chem. Mater., 2005, 17, p 1583–1590

    Article  Google Scholar 

  14. W.J. Lee, P.S. Shinde, G.H. Go, and C.H. Doh, Enhanced Photoelectrochemical Performance of WO3/Ti Photoanode Due to In Situ Formation of a Thin Interfacial Composite Layer, Appl. Surf. Sci., 2013, 270, p 267–271

    Article  Google Scholar 

  15. M.H. Yaacob, M.Z. Ahmad, A.Z. Sadek, J.Z. Ou, J. Campbell, K. Kalantar-zadeh, and W. Wlodarski, Optical Response of WO3 Nanostructured Thin Films Sputtered on Different Transparent Substrates Towards Hydrogen of Low Concentration, Sensors Actuators B, 2013, 177, p 981–988

    Article  Google Scholar 

  16. I.M. Szilagyi, L. Wang, P.I. Gouma, C. Balazsi, J. Madarasz, and G. Pokol, Preparation of Hexagonal WO3 from Hexagonal Ammonium Tungsten Bronze for Sensing NH3, Mater. Res. Bull., 2009, 44, p 505–508

    Article  Google Scholar 

  17. O. Pyper, R. Schollhorn, J.T.M. Donkers, and L.H.M. Krings, Nanocrystalline Structure of WO3 Thin Films Prepared by the Sol-Gel Technique, Mater. Res. Bull., 1998, 33, p 1095–1101

    Article  Google Scholar 

  18. X. Su, Y. Li, J. Jian, and J. Wang, In Situ Etching WO3 Nanoplates: Hydrothermal Synthesis, Photoluminescence and Gas Sensor Properties, Mater. Res. Bull., 2010, 45, p 1960–1963

    Article  Google Scholar 

  19. D.S. Martinez, A.M. Cruz, and E. Lopez-Cuellar, Synthesis of WO3 Nanoparticles by Citric Acid-Assisted Precipitation and Evaluation of Their Photocatalytic Properties, Mater. Res. Bull., 2013, 48, p 691–697

    Article  Google Scholar 

  20. C.N.J. Wagner, Local Arrangement for X-ray Diffraction, chap 7, Gordon and Breach, New York, 1966

  21. S. Thanikaikarasan, T. Mahalingam, A. Kathalingam, Y.D. Kim, and T. Kim, Growth and Characterization of Electrosynthesized Iron Selenide Thin Films, Vacuum, 2009, 83, p 1066–1072

    Article  Google Scholar 

  22. P. Biloen and G.T. Pott, X-ray Photoelectron Spectroscopy Study of Supported Tungsten Oxide, J. Catal., 1973, 30, p 169–174

    Article  Google Scholar 

  23. A.R. Babar, S.S. Shinde, A.V. Moholkar, C.H. Bhosale, J.H. Kim, and K.Y. Rajpure, Sensing Properties of Sprayed Antimony Doped Tin Oxide Thin Films: Solution Molarity, J. Alloys Compd., 2011, 509, p 3108–3115

    Article  Google Scholar 

  24. J. Gabrusenoks, A. Veispals, A. Czarnowski, and K.H. Meiwes-Broer, Infrared and Raman spectroscopy of WO3 and CdWO4, J. Electrochim. Acta, 2001, 46, p 2229–2231

    Article  Google Scholar 

  25. C. Santato, M. Odziemkowski, M. Ulmann, and J. Augustynski, Crystallographically Oriented Mesoporous WO3 Films: Synthesis, Characterization, and Applications, J. Am. Chem. Soc., 2001, 123, p 10639–10649

    Article  Google Scholar 

  26. E. Salje, The Orthorhombic Phase of WO3, Acta. Crystallogr., 1977, B33, p 574–577

    Article  Google Scholar 

  27. M. Daniel, B. Desbat, J. Lassegues, B. Gerand, and M. Figlarz, Infrared and Raman Study of W03 Tungsten Trioxides and WO3, xHzO Tungsten Trioxide Hydrates, J. Solid State Chem., 1987, 67, p 235–247

    Article  Google Scholar 

  28. J.L. Solis, J. Rodriguez, and W. Estrada, Highly Porous Tungsten-Oxide-Based Films Obtained by Spray-Gel for Gas Sensing Applications, Revista Mexicana Defisica, 2006, 52, p 29–31

    Google Scholar 

  29. K.Y. Rajpure, C.D. Lokhande, and C.H. Bhosale, A Comparative Study of the Properties of Spray-Deposited Sb2Se3 Thin Films Prepared from Aqueous and Nonaqueous Media, Mater. Res. Bull., 1999, 34, p 1079–1087

    Article  Google Scholar 

  30. H.L. Hartnagel, A.L. Dawar, A.K. Jain, C. Jagadish, Semiconducting Transparent Thin Films, Institute of Physics Publishing, Bristol, 1995, p 244

  31. M.A. Damian, Y. Rodriguez, J.L. Solis, and W. Estrada, Characterization and Butanolyethanol Sensing Properties of Mixed Tungsten Oxide and Copper Tungstate films Obtained by Spray-Sol-Gel, Thin Solid Films, 2003, 444, p 104–110

    Article  Google Scholar 

  32. M. Manfredi, C. Paracchini, G.C. Salviati, and G. Schianchi, Conductive Processes in Transparent WO3 Films Irradiated with Ultraviolet Light, Thin Solid Films, 1981, 79, p 161–166

    Article  Google Scholar 

  33. J.Y. Luo, F.L. Zhao, L. Gong, H.J. Chen, and J. Zhou, Ultraviolet-Visible Emission from Three-Dimensional WO3-x Nanowire Networks, Appl. Phys. Lett., 2007, 91, p 093124

    Article  Google Scholar 

  34. J. Diaz-Reyes, J.E. Lores-Mena, J.M. Gutierrez-Arias, M.M. Morincastillo, H. Azucena-Courtecatl, M. Galvan, P. Rodriguwz-Fragoso, and A. Mendez-Lopez, Optical and Structural Properties of WO3 as a Function of the Annealing Temperature, Advances in Sensors, Signals and Materials, p 99–104, ISBN: 978-960-474-248-6

  35. V.S. Sawant, S.S. Shinde, R.J. Deokate, C.H. Bhosale, B.K. Chougule, and K.Y. Rajpure, Effect of Calcining Temperature on Electrical and Dielectric Properties of Cadmium Stannate, Appl. Surf. Sci., 2009, 255, p 6675–6678

    Article  Google Scholar 

  36. R.C. Kambale, N.R. Adhate, B.K. Chougule, and Y.D. Kolekar, Magnetic and dielectric properties of mixed spinel Ni-Zn ferrites synthesized by citrate-nitrate combustion method, J. Alloys Compd., 2010, 491, p 372–377

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by UGC through financial support by major research project entitled “Photocatalytic degradation of waste water using sprayed tungsten trioxide (WO3) thin films”. No. 41-869/2012. One of the authors (V. V. Ganbavle) is thankful to UGC New Delhi, for awarding fellowship through UGC-BSR scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Y. Rajpure.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganbavle, V.V., Agawane, G.L., Moholkar, A.V. et al. Structural, Optical, Electrical, and Dielectric Properties of the Spray-Deposited WO3 Thin Films. J. of Materi Eng and Perform 23, 1204–1213 (2014). https://doi.org/10.1007/s11665-014-0873-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-0873-3

Keywords

Navigation