Skip to main content
Log in

Effect of Grain Refinement and Cooling Rate on the Microstructure and Mechanical Properties of Secondary Al-Si-Cu Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of AlTi5B1 grain refinement and different solidification rates on metallurgical and mechanical properties of a secondary AlSi7Cu3Mg alloy is reported. While the Ti content ranges from 0.04 up to 0.225 wt.%, the cooling rate varies between 0.1 and 5.5 °C/s. Metallographic and thermal analysis techniques have been used to quantitatively examine the macro- and microstructural changes occurring with grain refiner addition at various cooling rates. The results indicate that a small AlTi5B1 addition produces the greatest refinement, while no significant reduction of grain size is obtained with a great amount of grain refiner. On increasing the cooling rate, a lower amount of AlTi5B1 master alloy is necessary to produce a uniform grain size throughout the casting. The combined addition of AlTi5B1 and Sr does not produce any reciprocal interaction or effect on primary α-Al and eutectic solidification. The grain refinement improves the plastic behavior of the alloy and increases the reliability of castings, as evidenced by the Weibull statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Zehnder, R. Pritzlaff, S. Lundberg, and B. Gilmont, Aluminium in Transport, Aluminium in Commercial Vehicles, 2nd ed., European Aluminium Association, 2011, p 7–13

  2. EAA, Aluminium in Cars, 1st ed., European Aluminium Association, 2007, p 1–15

  3. F. Bonollo, I. Carturan, G. Cupitò, and R. Molina, Life Cycle Assessment in the Automotive Industry: Comparison Between Aluminium and Cast Iron Cylinder Blocks, Mater. Sci. Technol., 2006, 24(2), p 3–8

    Google Scholar 

  4. U.J.M. Boin and M. Bertram, Melting Standardized Aluminum Scrap, JOM, 2005, 57(8), p 26–33

    Article  Google Scholar 

  5. M.E. Schlesinger, Aluminum Recycling, 1st ed., CRC Press, Boca Raton, 2007, p 176–192

    Google Scholar 

  6. J.E. Gruzleski and B.M. Closset, The Treatment of Liquid Aluminum-Silicon Alloys, American Foundrymen’s Society Inc., Illinois, 1990

    Google Scholar 

  7. D.G. McCartney, Grain Refining of Aluminum and Its Alloys Using Inoculants, Int. Mater. Rev., 1989, 34(5), p 247–260

    Article  Google Scholar 

  8. Y. Birol, An Improve Practice to Manufacture Al-Ti-B Master Alloys by Reacting Halide Salts with Molten Aluminum, J. Alloy. Compd., 2006, 420(1–2), p 71–76

    Article  Google Scholar 

  9. M. Easton and D. StJohn, Grain Refinement of Aluminium Alloys: Part I. The Nucleant and Solute Paradigms—A Review of the Literature, Metall. Mater. Trans. A, 1999, 30(6), p 1613–1623

    Article  Google Scholar 

  10. A.L. Greer, P.S. Cooper, M.W. Meredith, W. Schneider, P. Schumacher, J.A. Spittle, and A. Tronche, Grain Refinement of Aluminium Alloys by Inoculation, Adv. Eng. Mater., 2003, 5(1–2), p 81–91

    Article  Google Scholar 

  11. M. Easton and D. StJohn, An Analysis of the Relationship Between Grain Size, Solute Content, and the Potency and Number Density of Nucleant Particles, Metall. Mater. Trans. A, 2005, 36(7), p 1911–1920

    Article  Google Scholar 

  12. Y.C. Lee, A.K. Dahle, D.H. StJohn, and J.E.C. Hutt, The Effect of Grain Refinement and Silicon Content on Grain Formation in Hypoeutectic Al-Si Alloys, Mater. Sci. Eng. A, 1999, 259(1), p 43–52

    Article  Google Scholar 

  13. Y. Birol, Performance of AlTi5B1, AlTi3B3 and AlB3 Master Alloys in Refining Grain Structure of Aluminium Foundry Alloys, Mater. Sci. Technol., 2012, 28(4), p 481–486

    Article  Google Scholar 

  14. M. Johnsson, L. Bäckerud, and G.K. Sigworth, Study of the Mechanism of Grain Refinement of Aluminum After Additions of Ti and B Containing Master Alloys, Metall. Trans. A, 1993, 24(2), p 481–491

    Article  Google Scholar 

  15. P. Schumacher, A.L. Greer, J. Worth, P.V. Evans, M.A. Kearns, P. Fisher, and A.H. Green, New Studies of Nucleation Mechanisms in Aluminium Alloys: Implications for Grain Refinement in Practice, Mater. Sci. Technol., 1998, 14(5), p 394–404

    Google Scholar 

  16. P. Schumacher and B.J. McKay, TEM Investigation of Heterogeneous Nucleation Mechanisms in Al-Si Alloys, J. Non-Cryst. Solids, 2003, 317(1–2), p 123–128

    Article  Google Scholar 

  17. T. Chandrashekar, M.K. Muralidhara, K.T. Kashyap, and P. Raghothama Rao, Effect of Growth Restricting Factor on Grain Refinement of Aluminum Alloys, Int. J. Adv. Manuf. Technol., 2009, 40(3–4), p 234–241

    Article  Google Scholar 

  18. M.N. Binney, D.H. StJohn, A.K. Dahle, J.A. Taylor, E.C. Burhop, and P.S. Cooper, Grain Refinement of Secondary Aluminium-Silicon Casting Alloys, TMS Light Metals, March 2–6, 2003 (San Diego, CA, USA), Minerals, Metals and Materials Society (TMS), 2003, p 917–921

  19. J.A. Spittle and S. Sadli, The Influence of Zirconium and Chromium on the Grain-Refining Efficiency of Al-Ti-B Inoculants, Cast Met., 1995, 7(4), p 247–253

    Google Scholar 

  20. A.M. Bunn, P. Schumacher, M.A. Kearns, C.B. Boothroyd, and A.L. Greer, Grain Refinement by Al-Ti-B Alloys in Aluminium Melts: A Study of the Mechanisms of Poisoning by Zirconium, Mater. Sci. Technol., 1999, 15(10), p 1115–1123

    Article  Google Scholar 

  21. EN 1706:2010, Aluminium and Aluminium Alloys—Castings—Chemical Composition and Mechanical Properties, European Committee for Standardization, p 24–25

  22. L. Bäckerud, G. Chai, and J. Tamminen, Solidification Characteristics of Aluminum: Foundry Alloys, Vol 2, 1st ed., American Foundrymen’s Society Inc., Des Plaines, IL, 1990

    Google Scholar 

  23. G.F. Vander Voort, Metallography: Principles and Practice, McGraw-Hill, New York, NY, 1984, p 612

    Google Scholar 

  24. ASTM E112-12, Standard Test Methods for Determining Average Grain Size, American Society for Testing Materials, p 9–11

  25. M. Drouzy, S. Jacob, and M. Richard, Interpretation of Tensile Results by Means of Quality Index and Probable Yield Strength, AFS Int. Cast Met. J., 1980, 5(2), p 43–50

    Google Scholar 

  26. C.H. Cáceres, A Rationale for the Quality Index of Al-Si-Mg Casting Alloys, Int. J. Cast Met. Res., 1998, 10(5), p 293–299

    Google Scholar 

  27. N.D. Alexopoulos and Sp.G. Pantelakis, Evaluation of the Effects of Variations in Chemical Composition on the Quality of Al-Si-Mg, Al-Cu, and Al-Zn-Mg Cast Aluminum Alloys, J. Mater. Eng. Perform., 2003, 12(2), p 196–205

    Article  Google Scholar 

  28. N.D. Alexopoulos, Definition of Quality in Cast Aluminum Alloys and Its Characterization with Appropriate Indices, J. Mater. Eng. Perform., 2006, 15(1), p 59–66

    Article  Google Scholar 

  29. Q. Wang, Y.X. Li, and X.C. Li, Grain Refinement of Al-7Si Alloys and the Efficiency Assessment by Recognition of Cooling Curves, Metall. Mater. Trans. A, 2003, 34(5), p 1175–1182

    Article  Google Scholar 

  30. L. Lu and A.K. Dahle, Effects of Combined Additions of Sr and AlTiB Grain Refiners in Hypoeutectic Al-Si Foundry Alloys, Mater. Sci. Eng. A, 2006, 435–436, p 288–296

    Article  Google Scholar 

  31. A.K. Dahle, K. Nogita, S.D. McDonald, C. Dinnis, and L. Luc, Eutectic Modification and Microstructure Development in Al-Si Alloys, Mater. Sci. Eng. A, 2005, 413–414, p 243–248

    Article  Google Scholar 

  32. S.D. McDonald, K. Nogita, and A.K. Dahle, Eutectic Nucleation in Al-Si Alloys, Acta Mater., 2004, 52(14), p 4273–4280

    Article  Google Scholar 

  33. A. Knuutinen, K. Nogita, S.D. McDonald, and A.K. Dahle, Modification of Al-Si Alloys with Ba, Ca, Y and Yb, J. Light Met., 2001, 1(4), p 229–240

    Article  Google Scholar 

  34. T.N. Ware, A.K. Dahle, S. Charles, and M.J. Couper, Effect of Sr, Na, Ca & P on the Castability of Foundry Alloy A356.2, ASM Materials Solutions 2002 Conference & Exposition, 2nd International Aluminium Casting Technology Symposium, Columbus, OH, USA, October 2002

  35. A. Manente and G. Timelli, Influence of Strontium Modification and Solidification History on the Microstructure of Cast Al-Si Alloys, Metall. Ital., 2008, 100(11–12), p 37–50

    Google Scholar 

  36. Q.G. Wang, D. Apelian, and D.A. Lados, Fatigue Behavior of A356/357 Aluminum Cast Alloys. Part 2—Effect of Microstructural Constituents, J. Light Met., 2001, 1(1), p 85–97

    Article  Google Scholar 

  37. L.A. Dobrzanski, R. Maniara, J. Sokołowski, and W. Kasprzak, Effect of Cooling Rate on the Solidification Behavior of AC AlSi7Cu2 Alloy, J. Mater. Process. Technol., 2007, 191(1–3), p 317–320

    Article  Google Scholar 

  38. S. Kahn and R. Elliot, Quench Modification of Aluminium-Silicon Eutectic Alloys, J. Mater. Sci., 1996, 31(14), p 3731–3737

    Article  Google Scholar 

  39. Q.G. Wang and C.H. Cáceres, Fracture Mode in Al-Si-Mg Casting Alloys, Mater. Sci. Eng. A, 1998, 241(1–2), p 72–82

    Article  Google Scholar 

  40. Q.G. Wang, C.H. Cáceres, and J.R. Griffiths, Damage by Eutectic Particle Cracking in Aluminum Casting Alloys A356/357, Metall. Mater. Trans. A, 2003, 34(12), p 2901–2912

    Article  Google Scholar 

  41. F. Grosselle, G. Timelli, and F. Bonollo, Doe Applied to Microstructural and Mechanical Properties of Al-Si-Cu-Mg Casting Alloys for Automotive Applications, Mater. Sci. Eng. A, 2010, 527(15), p 3536–3545

    Article  Google Scholar 

  42. F. Grosselle, G. Timelli, F. Bonollo, A. Tiziani, and E. Della Corte, Correlation Between Microstructure and Mechanical Properties of Al-Si Cast Alloys, Metall. Ital., 2009, 101(6), p 25–32

    Google Scholar 

  43. X. Teng, H. Mae, and Y. Bai, Probability Characterization of Tensile Strength of an Aluminum Casting, Mater. Sci. Eng. A, 2010, 527(16–17), p 4169–4176

    Article  Google Scholar 

  44. N.R. Green and J. Campbell, Statistical Distributions of Fracture Strengths of Cast Al-7Si-Mg Alloy, Mater. Sci. Eng. A, 1993, 173(1–2), p 261–266

    Article  Google Scholar 

  45. W. Weibull, A Statistical Distribution Function of Wide Applicability, J. Appl. Mech., 1951, 18(3), p 293–297

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the contribution of Teksid Aluminum Spa (Carmagnola, Italy) for supporting this research. Many thanks to Dr. R. Molina and Mr. R. Di Matteo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio Timelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timelli, G., Camicia, G. & Ferraro, S. Effect of Grain Refinement and Cooling Rate on the Microstructure and Mechanical Properties of Secondary Al-Si-Cu Alloys. J. of Materi Eng and Perform 23, 611–621 (2014). https://doi.org/10.1007/s11665-013-0757-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0757-y

Keywords

Navigation