Skip to main content

Advertisement

Log in

In Vitro Corrosion Behavior and Apatite Growth of Oxygen Plasma Ion Implanted Titanium Alloy β-21S

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Titanium alloy beta 21S was implanted with oxygen ions by plasma immersion ion implantation. The implanted surface was characterized by micro-Raman, XPS and FESEM before and after potentiodynamic polarization and electrochemical impedance studies in Hanks’ solution and after incubation in Hanks’ solution for 1 and 7 days. The investigations show that the native oxide on the sample is replaced by a compact oxide by implantation and the new oxide layer behaves in a different way in that a two layer model is required to explain the observed electrochemical impedance data. The analysis of layers formed in the electrochemical studies and after incubation in Hanks’ solution by XPS and FESEM shows that the new oxide surface is capable of inducing apatite growth on it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Oshida, Bioscience and Bio Engineering of Titanium Materials, 1st ed., Elsevier, Amsterdam, 2007, p 11–78

    Google Scholar 

  2. M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia, Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants—A Review, Prog. Mater. Sci., 2009, 54, p 397–425

    Article  CAS  Google Scholar 

  3. D.A. Puleo and A. Nanci, Understanding and Controlling the Bone-Implant Interface, Biomaterials, 1999, 20, p 2311–2321

    Article  CAS  Google Scholar 

  4. L. Mohan, D. Durgalakshmi, M. Geetha, T.S.N. Sankara Narayanan, and R. Asokamani, Electrophoretic Deposition of Nanocomposite (HAp + TiO2) on Titanium Alloy for Biomedical Applications, Ceram. Int., 2012, 38, p 3435–3443

    Article  CAS  Google Scholar 

  5. B. Elmengaard, J.E. Bechtold, and K. Soballe, In Vivo Study of the Effect of RGD Treatment on Bone on Growth on Press-Fit Titanium Alloy Implants, Biomaterials, 2005, 26, p 3521–3526

    Article  CAS  Google Scholar 

  6. V. Borsari, M. Fini, G. Giavaresi, L. Rimondini, R. Chiesa, L. Chiusoli et al., Sandblasted Titanium Osteointegration in Young, Aged and Ovariectomized Sheep, Int. J. Artif. Organs, 2007, 30, p 163–172

    CAS  Google Scholar 

  7. M. Manso, C.R. Navas, D. Gilliland, P.G. Ruiz, and F. Rossi, Cellular Response to Oxygen Containing Biomedical Polymers Modified by Ar and He Implantation, Acta Biomater., 2007, 3(5), p 735–743

    Article  CAS  Google Scholar 

  8. C. Mao, Y.Z. Qiu, H.B. Sang, H. Mei, A.P. Zhu, J. Shen et al., Various Approaches to Modify Biomaterial Surfaces for Improving Hemocompatibility, Adv. Colloid Interface Sci., 2004, 110, p 5–17

    Article  CAS  Google Scholar 

  9. M.F. Maitz, R.W.Y. Poon, X.Y. Liu, M.T. Phama, and P.K. Chu, Bioactivity of Titanium Following Sodium Plasma Immersion Ion Implantation and Deposition, Biomaterials, 2005, 26, p 5465–5473

    Article  CAS  Google Scholar 

  10. T. Hanawa, Y. Kamiura, S. Yamamoto, T. Kohgo, A. Amemiya, H. Ukai, K. Murakami, and K. Asaoka, Early Bone Formation Around Calcium-Ion-Implanted Titanium Inserted into Rat Tibia, J. Biomed. Mater. Res., 1997, 36, p 131–136

    Article  CAS  Google Scholar 

  11. X. Liu, P.K. Chu, and C. Ding, Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications, Mater. Sci. Eng. R Rep., 2004, 47, p 49–121

    Article  Google Scholar 

  12. T. Sawase, A. Wennerberg, K. Baba, Y. Tsuboi, L. Sennerby, C.B. Johansson, and T. Albrektsson, Clin. Implant Dent. Relat. Res., 2001, 3, p 221

    Article  CAS  Google Scholar 

  13. T. Kokubo, D.K. Pattanayak, S. Yamaguchi, H. Takadama, T. Matsushita, T. Kawai, M. Takemoto, S. Fujibayashi, T. Nakamura, and J.R. Soc, Interface, 2010, 7, p 503

    Google Scholar 

  14. D. Krupa, J. Baszkiewicz, J. Kozubowski, A. Barcz, G. Gawlik, J. Jagielski, and B. Larisch, Effect of Oxygen Implantation Upon the Corrosion Resistance of the OT-4-0 Titanium Alloy, Surf. Coat. Technol., 1997, 96, p 223–229

    Article  CAS  Google Scholar 

  15. Y. Okabe, M. Iwaki, and K. Takahashi, Target Temperature Dependence on Titanium Oxide Formation by High-Dose Oxygen Ion Implantation into Titanium Sheets, Mater. Sci. Eng. A, 1989, 115, p 79–82

    Article  Google Scholar 

  16. Y. Okabe, M. Iwaki, K. Takahashi, S. Ohira, and B.V. Crist, Formation of Rutile TiO2 Induced by High-Dose O+-Implantation and Its Characteristics, Nucl. Instrum. Methods Phys. Res. B, 1989, 39, p 619–622

    Article  Google Scholar 

  17. Y. Okabe, M. Iwaki, and K. Takahashi, Energy Deposition Effects of Additional Ion Bombardment on Titanium Oxides Formed by Oxygen Implantation, Nucl. Instrum. Methods Phys. Res. B, 1991, 61, p 44–47

    Article  Google Scholar 

  18. Y. Okabe, T. Fujihana, M. Iwaki, and B.V. Crist, Characterization of Oxide Layers Induced by Oxygen Ion Implantation into Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W, Surf. Coat. Technol., 1994, 66, p 384–388

    Article  CAS  Google Scholar 

  19. L. Mohan, C. Anandan, and V.K. Grips, Corrosion Behavior of Titanium Alloy Beta-21S Coated with Diamond like Carbon in Hank’s Solution, Appl. Surf. Sci., 2012, 258, p 6331–6340

    Article  CAS  Google Scholar 

  20. L. Mohan, C. Anandan, and V.K. William Grips, Investigation of Electrochemical Behavior of Nitrogen Implanted Ti-15Mo-3Nb-3Al Alloy in Hank’s Solution, J. Mater. Sci. Mater. Med., 2013, 24, p 623–633

    Article  CAS  Google Scholar 

  21. S. Tamilselvi, V. Raman, and N. Rajendran, Corrosion Behavior of Ti-6Al-7Nb and Ti-6Al-4V ELI, Alloys in the Simulated Body Fluid Solution by Electrochemical Impedance Spectroscopy, Electrochim. Acta, 2006, 52, p 839–846

    Article  CAS  Google Scholar 

  22. R.W.-W. Hsua, C.-C. Yang, C.-A. Huang, and Y.-S. Chen, Investigation on the Corrosion Behavior of Ti-6Al-4V Implant Alloy by Electrochemical Techniques, Mater. Chem. Phys., 2004, 86, p 269–278

    Article  Google Scholar 

  23. M. Metikos-Hukovic and R. Babic, Passivation and Corrosion Behavior of Cobalt and Cobalt-Chromium-Molybdenum Alloy, Corros. Sci., 2007, 49, p 3570–3579

    Article  CAS  Google Scholar 

  24. I. Milosev, T. Kosec, and H.H. Strehblow, XPS and EIS Study of the Passive Film Formed on Orthopaedic Ti-6Al-7Nb Alloy in Hank’s Physiological Solution, Electrochim. Acta, 2008, 53, p 3547–3558

    Article  CAS  Google Scholar 

  25. L. Mohan and C. Anandan, Effect of Gas Composition on Corrosion Behavior and Growth of Apatite on Plasma Nitrided Titanium Alloy Beta-21S, Appl. Surf. Sci., 2013, 268, p 288–296

    Article  CAS  Google Scholar 

  26. S.L. Assis and I. Costa, Electrochemical Evaluation of Ti-13Nb-13Zr, Ti-6Al-4V and Ti-6Al-7Nb Alloys for Biomedical Application by Long-Term Immersion Tests, Mater. Corros., 2007, 58, p 329–333

    Article  CAS  Google Scholar 

  27. S.L. Assis, S. Wolynec, and I. Costa, The Electrochemical Behavior of Ti-13Nb-13Zr Alloy in Various Solutions, Mater. Corros., 2008, 59, p 739–743

    Article  CAS  Google Scholar 

  28. E. Camps, L. Escobar-Alarcón, M.A. Camacho-López, and D.A. Solis Casados, Visible-Light Photocatalytic Activity of Nitrided TiO2 Thin Films, Mater. Sci. Eng. B, 2010, 174, p 80–83

    Article  CAS  Google Scholar 

  29. M. Ratova, P.J. Kelly, G.T. West, and I. Iordanova, Enhanced Properties of Magnetron Sputtered Photocatalytic Coatings via Transition Metal Doping, Surf. Coat. Technol., 2012, doi:10.1016/j.surfcoat.2012.04.037

    Google Scholar 

  30. Y.Z. Liu, X.T. Zu, S.U. Qiu, J. Cao, C.X. Li, X.Q. Huang, and C.F. Wei, Phase Formation and Modification of Corrosion Property of Nitrogen Implanted Ti-Al-V Alloy, Vacuum, 2006, 81, p 71–76

    Article  CAS  Google Scholar 

  31. M.A. Baker, S.L. Assis, O.Z. Higa, and I. Costa, Nanocomposite Hydroxyapatite Formation on a Ti-13Nb-13Zr Alloy Exposed in a MEM Cell Culture Medium and the Effect of H2O2 Addition, Acta Biomater., 2009, 5, p 63–75

    Article  CAS  Google Scholar 

  32. T. Kasuga, H. Kondo, and M. Nogami, Apatite Formation on TiO2 in Simulated Body Fluid, J. Cryst. Growth, 2002, 235, p 235–240

    Article  CAS  Google Scholar 

  33. H. Takadama, H.M. Kin, T. Kokubo, and T. Nakamura, XPS Study of the Process of Apatite Formation on Bioactive Ti-6Al-4V Alloy in Simulated Body Fluid, Sci. Technol. Adv. Mater., 2001, 2, p 389–396

    Article  CAS  Google Scholar 

  34. L.A. de Sena, N.C.C. Rocha, M.C. Andrade, and G.A. Soares, Bioactivity Assessment of Titanium Sheets Electrochemically Coated with Thick Oxide Film, Surf. Coat. Technol., 2003, 166, p 254–258

    Article  Google Scholar 

  35. B.H. Lee, Y.D. Kim, and K.H. Lee, XPS Study of Bioactive Graded Layer in Ti-In-Nb-Ta Alloy Prepared by Alkali and Heat Treatments, Biomaterials, 2003, 24, p 2257–2266

    Article  CAS  Google Scholar 

  36. S. Ferraris, S. Spriano, C.L. Bianchi, C. Cassinelli, and E. Verne, Surface Modification of Ti-6Al-4V Alloy for Biomineralization and Specific Biological Response: Part II, Alkaline Phosphatase Grafting, J. Mater. Med., 2011, 22, p 1835–1842

    Article  CAS  Google Scholar 

  37. E. Ajami and K.F.A. Zinsou, Formation of OTS Self-Assembled Monolayers at Chemically Treated Titanium Surfaces, J. Mater. Med., 2011, 22, p 1813–1824

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was carried out under the CSIR network project on Nanostructured Advanced Materials NWP-51-02. The authors would like to thank the Director, National Aerospace Laboratories, Bangalore for his support and permission to publish the work. The authors would like to thank Mr. Siju and Mr. N. T. Manikandanath, NAL for FESEM and Micro-Raman studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Anandan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anandan, C., Mohan, L. In Vitro Corrosion Behavior and Apatite Growth of Oxygen Plasma Ion Implanted Titanium Alloy β-21S. J. of Materi Eng and Perform 22, 3507–3516 (2013). https://doi.org/10.1007/s11665-013-0628-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0628-6

Keywords

Navigation