Skip to main content

Advertisement

Log in

Investigation of electrochemical behavior of nitrogen implanted Ti–15Mo–3Nb–3Al alloy in Hank’s solution

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Titanium alloy Ti–15–3–3 (Beta-21S) was implanted with nitrogen ions by plasma immersion ion implantation at 700, 750 and 800 °C. Micro Raman and XPS results confirm the formation of nitrides after implantation. Corrosion current density (icorr) of the treated samples in simulated body fluid (Hank’s solution) is higher than that of the substrate. Treated samples also exhibit lower charge transfer resistance and higher double layer capacitance as compared to that of substrate in electrochemical impedance spectroscopic studies. However, no corrosion related effects are observed after 28 days of immersion in SBF. EDS results show the presence of oxygen after corrosion studies. XPS spectra from the implanted samples show the presence of nitride and oxynitride on the surface and formation of oxide due to corrosion process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu X, Chu PK, Ding C. Surface modification of titanium, titanium alloys and related materials for biomedical applications. Mater Sci Eng R. 2004;47:49–121.

    Article  Google Scholar 

  2. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants: a review. Prog Mater Sci. 2009;54:397–425.

    Article  CAS  Google Scholar 

  3. Raabe D, Sander B, Friak M, Ma D, Neugebauer J. Theory-guided bottom-up design of β-titanium alloys as biomaterials based on first principles calculations: theory and experiments. Acta Mater. 2007;55:4475–87.

    Article  CAS  Google Scholar 

  4. Huang N, Yang P. Surface modification of biomaterials by plasma immersion ion implantation. Surf Coat Technol. 2004;186:218–26.

    Article  CAS  Google Scholar 

  5. Mandl S, Rauschenbach B. Improving the biocompatibility of medical implants with plasma immersion ion implantation. Surf Coat Technol. 2002;156:276–83.

    Article  CAS  Google Scholar 

  6. Oshida Y. Bioscience and bio engineering of titanium Materials. The Netherlands: Elsevier; 2007.

    Google Scholar 

  7. Oliveira NTC, Aleixo G, Caram R, Guastaldi AC. Electrochemical behavior of Ti–Mo alloys applied as biomaterials. J Mater Sci Eng A. 2007;452–453:727–31.

    Article  Google Scholar 

  8. Guo H, Enomoto M. Surface reconstruction associated with a precipitation in a Ti–Mo alloy. Scripta Mater. 2006;54:1409–13.

    Article  CAS  Google Scholar 

  9. Sukedai E, Yoshimitsu D, Matsumoto H, Hashimoto H, Kiritani. β to ω transformation due to aging in a Ti–Mo alloy deformed in impact compression. Mater Sci Eng A. 2003;1–3:133–8.

    Google Scholar 

  10. Olivera NTC, Guastaldi AC. Electrochemical stability and corrosion resistance of Ti–Mo alloys for biomedical applications. Acta Biomater. 2009;5:399–405.

    Article  Google Scholar 

  11. Karthega M, Raman V, Rajendran N. Influence of potential on the electrochemical behaviour of beta titanium alloys in Hank’s solution. Acta Biomater. 2007;3:1019–23.

    Article  CAS  Google Scholar 

  12. Kumar S, Sankara Narayanan TSN. Evaluation of corrosion behavior of Ti–25Mo alloy in chloride medium. J Appl Electrochem. 2011;41:123–7.

    Article  CAS  Google Scholar 

  13. Animesh C, Bikramjit B, Balasubramaniam R. Electrochemical behavior of Ti-based alloys in simulated human body fluid environment. Trends Biomater Artif Organs. 2005;18:64–72.

    Google Scholar 

  14. Yu SY, Scully JR. Corrosion and passivity of Ti–13 % Nb–13 % Zr in comparison to other biomedical implant alloys. Corrosion. 1997;53(12):965.

    Article  CAS  Google Scholar 

  15. Al-Mobarak NA, Al-swayih AA, Al-Rashoud FA. Corrosion behavior of Ti–6Al–7Nb alloy in biological solution for dentistry applications. Int J Electrochem Sci. 2011;6:2031–42.

    CAS  Google Scholar 

  16. Tamilselvi S, Raman V, Rajendran N. Evaluation of corrosion behavior of surface modified Ti–6Al–4V ELI alloy in Hank’s solution. J Appl Electrochem. 2010;40:285–93.

    Article  CAS  Google Scholar 

  17. de Sergio Luiz A, Stephan W, Isolda C. Corrosion characterization of titanium alloys by electrochemical techniques. Electrochim Acta. 2006;51:1815–9.

    Article  Google Scholar 

  18. Popa MV, Vasilescu E, Drob P, Vasilescu C. The modeling of passive film formation on a new titanium industrial alloy in very aggressive media. Rev Chim. 2005;56:908–12.

    CAS  Google Scholar 

  19. Gokul LS, Raman V, Rajendran N, Babi MAK, Arivuoli D. In vitro corrosion behavior of plasma nitrided Ti–6Al–7Nb orthopaedic alloy in Hank’s solution. Sci Technol Adv Mater. 2003;4:415–8.

    Article  Google Scholar 

  20. Davis JW, Ulrickson MA, Causey RA. Use of titanium in fusion components. J Nucl Mater. 1994;212–215:813–7.

    Article  Google Scholar 

  21. Sioshansi P. Medical application of ion beam processes. Nucl Instrum Methods Phys Res B. 1987;19/20:204.

    Article  Google Scholar 

  22. Williams DF. Review: tissue-biomaterial interactions. J Mater Sci. 1987;22:3421–45.

    Article  CAS  Google Scholar 

  23. Mandl S, Sader R, Thorwarth G, Krause D, Zeilhofer HF, Horch HH, Rauschenbach B. Investigation on plasma immersion ion implantation treated medical implants. Biomol Eng. 2002;19:129–32.

    Article  CAS  Google Scholar 

  24. Tang BY, Chu PK, Wang SY, Chow KW, Wang XF. Methane and nitrogen plasma immersion ion implantation of titanium metal. Surf Coat Technol. 1998;103–104:248–51.

    Google Scholar 

  25. Chen JA, Scheure JT, Ritter C, Alexander RB, Conrad JR. Comparison between conventional and plasma source ion-implanted femoral knee components. J Appl Phys. 1991;70:6757.

    Article  CAS  Google Scholar 

  26. Wang SY, Chu PK, Tang BY, Zeng XC, Wang XF. Improvement of the corrosion property of Cr4Mo4V bearing steel using plasma immersion ion implantation. Nucl Instrum Methods Phys Res B. 1997;127(128):1000–3.

    Article  Google Scholar 

  27. Qiu X, Conrad JR, Dodd RA, Worzala FJ. Plasma source nitrogen ion implantation of Ti–6Al–4V. Metall Trans A. 1990;21:1663–7.

    Article  Google Scholar 

  28. Conrad JR, Dodd RA, Han S, Madapura M, Scheure JT, Sridharan K. Ion beam assisted coating and surface modification with plasma source ion implantation. J Vac Sci Technol A. 1990;8:3146.

    Google Scholar 

  29. Conrad JR, Radtke JL, Dodd RA, Worzala FJ. Plasma source ion implantation technique for surface modification of materials. J Appl Phys. 1987;62:4591.

    Article  CAS  Google Scholar 

  30. Johns SM, Bell T, Samandi S, Collins GA. Wear resistance of plasma immersion ion implanted Ti6Al4V. Surf Coat Technol. 1996;85:7–14.

    Article  CAS  Google Scholar 

  31. Nikita Z, Mc Ewen GD, karpagavalli R, Anhong Z. Bio-corrosion studies of TiO2 nanoparticle-coated Ti–6Al–4V implant in simulated biofluids. J Nanopart Res. 2010;12:1609–23.

    Article  Google Scholar 

  32. Tamilselvi S, Raman V, Rajendran N. Corrosion behavior of Ti–6Al–7Nb and Ti–6Al–4V ELI alloys in the simulated body fluid solution by electrochemical impedance spectroscopy. Electrochem Acta. 2006;52:839–46.

    Article  CAS  Google Scholar 

  33. Wen-Wei RH, Chun-Chen Y, Ching-An H, Yi-Sui C. Investigation on the corrosion behavior of Ti–6Al–4V implant alloy by electrochemical techniques. Mater Chem Phys. 2004;86:269–78.

    Article  Google Scholar 

  34. Metikos-Hukovic M, Babic R. Passivation and corrosion behavior of cobalt and cobalt–chromium–molybdenum alloy. Corros Sci. 2007;49:3570–9.

    Article  CAS  Google Scholar 

  35. Milosev I, Kosec T, Strehblow HH. XPS and EIS study of the passive film formed on orthopaedic Ti–6Al–7Nb alloy in Hank’s physiological solution. Electrochim Acta. 2008;53:3547–58.

    Article  CAS  Google Scholar 

  36. Constable CP, Yarwood J, Munz WD. Raman microscopic studies of PVD hard coatings. Surf Coat Technol. 1999;116–119:155–9.

    Article  Google Scholar 

  37. Liu YZ, Zu XT, Qiu SU, Cao J, Li CX, Huang XQ, Wei CF. Phase formation and modification of corrosion property of nitrogen implanted Ti–Al–V alloy. Vacuum. 2006;81:71–6.

    Article  CAS  Google Scholar 

  38. Saha NC, Tompkins HG. Titanium nitride oxidation chemistry: an X-ray photoelectron spectroscopy study. J Appl Phys. 1992;72:3072.

    Article  CAS  Google Scholar 

  39. Esaka F, Furuya K. Comparison of surface oxidation of titanium nitride and chromium nitride films studied by X-ray absorption and photoelectron spectroscopy. J Vac Sci Technol A. 1997;15:2521–8.

    Article  CAS  Google Scholar 

  40. Stefano P, Lucio CC, Erik V, Giovanni C, Orfeo S, Sergio M, De Vita A. Bioactivity of TiN-coated titanium implants. Acta Mater. 2004;52:1237–45.

    Article  Google Scholar 

Download references

Acknowledgments

The work was carried out under the CSIR network project on Nanostructured Advanced Materials NWP-51-02. The authors would like to thank the Director, National Aerospace Laboratories, Bangalore for his support and permission to publish the work. The authors would like to thank Mr. Siju, Mr. N.T. Manikandanath and Mrs. S. Latha, NAL for the EDS, Micro Raman spectroscopy analysis and optical microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Anandan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohan, L., Anandan, C. & William Grips, V.K. Investigation of electrochemical behavior of nitrogen implanted Ti–15Mo–3Nb–3Al alloy in Hank’s solution. J Mater Sci: Mater Med 24, 623–633 (2013). https://doi.org/10.1007/s10856-012-4835-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4835-8

Keywords

Navigation