Skip to main content
Log in

Effect of Host Media on Microbial Influenced Corrosion due to Desulfotomaculum nigrificans

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This article reports about the tests carried to investigate microbial-induced corrosion on stainless steels due to sulfate-reducing bacteria sp. Desulfotomaculum nigrificans in different host media. Stainless steel 304L, 316L, and 2205 were selected for the test. Modified Baar’s media (BM), sodium chloride solution, and artificial sea water (SW) were used as test solutions in anaerobic conditions. Electrochemical polarization and immersion test were performed to estimate the extent of corrosion rate and pitting on stainless steels. SEM/EDS were used to study the details inside/outside pits formed on the corroded samples. Biofilm formed on corroded coupons was analyzed for its components by UV/Visible spectroscopy. Corrosion attack on the test samples was observed maximum in case of exposure to SW followed by NaCl solution, both having sulfide and chloride whereas stainless steel exposed to BM, having sulfide, showed minimum attack. Tendency of extracellular polymeric substances to bind metal ions is observed to be responsible for governing the extent of corrosion attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W.A. Hamilton, Sulfate-Reducing Bacteria and Anaerobic Corrosion, Annu. Rev. Microbiol., 1985, 39, p 195–217

    Article  CAS  Google Scholar 

  2. I.B. Beech, Sulfate-Reducing Bacteria in Biofilms on Metallic Materials and Corrosion, Microbiol. Today, 2003, 30, p 115–117

    Google Scholar 

  3. R.K. Nilsen, J. Beeder, T. Thorstenson, and T. Torsvik, Distribution of Thermophilic Marine Sulphate Reducers in North Sea Oil Field Waters and Oil Reservoirs, Appl. Environ. Microbiol., 1996, 62, p 1793–1798

    CAS  Google Scholar 

  4. P. Cristiani and U. Giancola, Heat Exchanger Fouling Mitigation and Cleaning Technologies, H. Muller-Steinhagen, Ed., Publico Publications, Essen, 2000, p 334–349.

  5. P. Cristiani, G. Perboni, and A. Debenedetti, Effect of Chlorination on the Corrosion of Cu/Ni 70/30 Condenser Tubing, Electrochim. Acta, 2008, 54, p 100–107

    Article  CAS  Google Scholar 

  6. R.C. Newman, H.S. Isaacs, and B. Alman, Effects of Sulfur Compounds on the Pitting Behavior of Type 304 Stainless Steel in Near-Neutral Chloride Solutions, Corrosion, 1982, 38, p 261–265

    Article  CAS  Google Scholar 

  7. S.E. Werner, C.A. Johnson, N.J. Laycock, P.T. Wilson, and B.J. Webster, Pitting of Type 304 Stainless Steel in the Presence of a Biofilm Containing Sulphate Reducing Bacteria, Corros. Sci., 1998, 40, p 465–480

    Article  CAS  Google Scholar 

  8. T.J. Marchesani, J.A. Ellor, and G.A Gehring Jr., Effect of Target Chlorination on the Corrosion Behavior of Copper-Nickel Condenser Tubing, EPRI TR-101405, Ocean City Research Corporation, Final Report, October 1992

  9. R. J. Ferrara, E. Taschenberg, and P.J. Moran, The Effect of Chlorinated Sea Water on Galvanic Corrosion Behavior of Alloys Used in Seawater Piping Systems. Corrosion 85, Boston, MA, Paper No. 211, 1985

  10. R. Toress-Sanchez, A. Magana-Vazuez, and J.M. Sanchez-Yanez, High Temperature Microbial Corrosion in the Condenser of a Geothermal Electric Power Unit, Mater. Performance, 1997, 36, p 43–46

    Google Scholar 

  11. M.A.N. Almeida and F.P. de Franca, Thermophilic and Mesophilic Bacteria in Biofilms Associated with Corrosion in a Heat Exchanger, World J. Microbiol. Biotechnol., 1999, 15, p 439–442

    Article  Google Scholar 

  12. A.V.R. Kumar, R. Singh, and R.K. Nigam, Moissbauer Spectroscopy of Corrosion Products of Mild Steel due to Microbiologically Influenced Corrosion, J. Radioanal. Nucl. Chem., 1999, 242, p 131–137

    Article  CAS  Google Scholar 

  13. R. Alfaro-Cuevas-Villanueva, R. Cortes-Martinez, J.J. García-Díaz, R. Galvan-Martinez, and R. Torres-Sanchez, Microbiologically Influenced Corrosion of Steels by Thermophilic and Mesophilic Bacteria, Mater. Corros., 2006, 57, p 543–548

    Article  CAS  Google Scholar 

  14. D. Çetin, S. Bilgiç, S. Dönmez, and G. Dönmez, Determination of Biocorrosion of Low Alloy Steel by Sulfate-Reducing Desulfotomaculum sp. Isolated from Crude Oil Field, Mater. Corros., 2007, 58, p 841–847

    Article  Google Scholar 

  15. D. Çetin, S. Bilgiç, and G., Dönmez, Biocorrosion of Low Alloy Steel by Desulfotomaculum sp. and Effect of Biocides on Corrosion Control, ISIJ Int., 2007, 47, p 1023–1028

    Article  Google Scholar 

  16. D. Çetin and M.L. Aksu, Corrosion Behavior of Low-Alloy Steel in the Presence of Desulfotomaculum sp., Corros. Sci., 2009, 51, p 1584–1588

    Article  Google Scholar 

  17. B. Anandkumar, J.H. Choi, G. Venkatachari, and S. Maruthamuthu, Molecular Characterization and Corrosion Behavior of Thermophilic (55°C) SRB Desulfotomaculum kuznetsovii Isolated from Cooling Tower in Petroleum Refinery, Mater. Corros., 2009, 60, p 730–737

    Article  CAS  Google Scholar 

  18. B. Anandkumar, A. Rajasekar, G. Venkatachari, and S. Maruthamuthu, Effect of Thermophilic Sulphate-Reducing Bacteria (Desulfotomaculum geothermicum) Isolated from Indian Petroleum Refinery on the Corrosion of Mild Steel, Curr. Sci., 2009, 97, p 342–348

    CAS  Google Scholar 

  19. H. El Hajj, A. Abdelouas, B. Grambow, C. Martin, and M. Dion, Microbial Corrosion of P235GH Steel Under Geological Condition, Phys. Chem. Earth, 2010, 35, p 248–253

    Article  Google Scholar 

  20. P.J. Antony, S. Chonmdar, P. Kumar, and R. Raman, Corrosion of 2205 Duplex Stainless Steel in Chloride Medium Containing Sulfate-Reducing Bacteria, Electrochim. Acta, 2007, 52, p 3985–3994

    Article  CAS  Google Scholar 

  21. E.I. Sungur, N. Cansever, and A. Cotuk, Microbial Corrosion of Galvanized Steel by a Freshwater Strain of Sulphate Reducing Bacteria (Desulfovibrio sp.), Corros. Sci., 2007, 49, p 1097–1109

    Article  Google Scholar 

  22. P. Angell, J.-S. Luo, and D.C. White, Microbially Sustained Pitting Corrosion of 304 Stainless Steel in Anaerobic Seawater, Corros. Sci., 1995, 37, p 1085–1096

    Article  CAS  Google Scholar 

  23. “Standard Reference Test Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements”, G5-87, Annual Book of ASTM Standards, Vol 03.02, ASTM, p 73–79

  24. “Standard Practice for Laboratory Immersion Corrosion Testing of Metals”, G31-72, Annual Book of ASTM Standards, Vol 03.02, ASTM, p 102–109

  25. H. Liu and H.H.P. Fang, Extraction of Extracellular Polymeric Substances (EPS) of Sludges, J. Biotechnol., 2002, 95, p 249–256

    Article  CAS  Google Scholar 

  26. A. Nigam, Lab Manual in Biochemistry, Immunology and Biotechnology, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2007

    Google Scholar 

  27. K. Mojica, D. Elsey, and M.J. Cooney, Quantitative Analysis of Biofilm EPS Uronic Acid Content, J. Microbiol. Method, 2007, 71, p 61–65

    Article  CAS  Google Scholar 

  28. E.G. Bligh and W.J. Dyer, A Rapid Method of Total Lipid Extraction and Purification, Biochem. Physiol., 1959, 37, p 911–917

    Article  CAS  Google Scholar 

  29. G. Rouser, S. Fleischer, and A. Yamamoto, Two Dimensional Thin Layer Chromatography Separation of Polar Lipid and Determination of Phospholipids by Phosphorous Analysis of Spots, Lipid, 1970, 5, p 494–496

    Article  CAS  Google Scholar 

  30. A.D. Karkhanis, J.Y. Zeltner, and D.J.C. Carlo, A New and Improved Microassay to Determine 2-Keto-3-deoxyoctonate in Lipopolysaccharide of Gram-Negative Bacteria, Anal. Biochem., 1978, 85, p 595–601

    Article  CAS  Google Scholar 

  31. I.B. Beech, C.W.S. Cheung, C.S.P. Chan, M.A. Hill, R. Franco, and A.R. Lino, Study of Parameters Implicated in the Biodeterioration of Mild Steel in the Presence of Different Species of Sulphate-Reducing Bacteria, Int. Biodeterior. Biodegrad., 1994, 34, p 289–303

    Article  CAS  Google Scholar 

  32. C.D. Ellwood, W.C. Keevil, D.P. Marsh, M.C. Brown, and N.J. Wardell, Surface-Associated Growth, Philos. Trans. R. Soc. B, 1982, 297, p 517–532

    Article  CAS  Google Scholar 

  33. A. Boyd and M.A. Chakrabart, Role of Alginate Lyase in Cell Detachment of Pseudomonas aeruginosa, Appl. Environ. Microbiol., 1994, 60, p 2355–2359

    CAS  Google Scholar 

  34. X. Zhang and L.P. Bishop, Biodegradability of Biofilm Extracellular Polymeric Substances, Chemosphere, 2003, 50, p 63–69

    Article  CAS  Google Scholar 

  35. J. Wingender, T.R. Neu, and H.C. Flemming, What are Bacterial Extracellular Polymeric Substance, Microbial Extracellular Polymeric Substances: Characterization, Structure and Function, J. Wingender, T.R. Neu, and H.C. Flemming, Ed., Springer, Berlin, 1999, p 1–19

  36. K.-Y. Chan, L.-C. Xu, and H.H.P. Fang, Anaerobic Electrochemical Corrosion of Mild Steel in the Presence of Extracellular Polymeric Substances Produced by a Culture Enriched in Sulfate-Reducing Bacteria, Environ. Sci. Technol., 2002, 36, p 1720–1727

    Article  CAS  Google Scholar 

  37. V. Zinkevich, I. Bogdarina, H. Kang, W.A.M. Hil, R. Tapper, I.B. Beech, K.-Y. Chan, L.-C. Xu, and H.H.P. Fang, Anaerobic Electrochemical Corrosion of Mild Steel in the Presence of Extracellular Polymeric Substances Produced by a Culture Enriched in Sulfate-Reducing Bacteria, Environ. Sci. Technol., 1996, 36, p 1720–1727

    Google Scholar 

  38. V.W. Kueher and I.S.V.D. Vlugt, Graphitization of Cast Iron an Electrochemical Process in Anaerobic Soil, Water, 1934, 18, p 147–165

    Google Scholar 

  39. R.S. Poulsion, S.J.P. Colberg, and I.J. Drever, Toxicity of Heavy Metals (Ni, Zn) to Desulfovibrio desulfuricans, Geomicrobiol J., 1997, 14, p 41–49

    Article  Google Scholar 

  40. C. Sun, J. Xu, F.H. Wang, and C.K. Yu, Effect of Sulfate Reducing Bacteria on Corrosion of Stainless Steel 1Cr18Ni9Ti in Soils Containing Chloride Ions, Mater. Chem. Phys., 2011, 126, p 330–336

    Article  CAS  Google Scholar 

  41. A.K. Singh and A. Pourbaix, Rapports Techniques CEBELCOR 166, 1997, RT.318

  42. G. Schmitt, Effect of Elemental Sulfur on Corrosion in Sour Gas Systems, Corrosion, 1991, 47, p 285–307

    Article  CAS  Google Scholar 

  43. S.J. Yuan and S.O. Pehkonen, AFM Study of Microbial Colonization and its Deleterious Effect on 304 Stainless Steel by Pseudomonas NCIMB 2021 and Desulfovibrio desulfuricans in Simulated Seawater, Corros. Sci., 2009, 51, p 1372–1385

    Article  CAS  Google Scholar 

  44. T.E. Ford, J.S. Maki, and R. Mitchell, Involvement of Bacterial Exopolymers in Biodeterioration of Metals, Biodeterioration, Vol 7, D.R. Houghton, R.N. Sith, and H.O.W. Eggins, Ed., Elsevier, London, New York, 1988, p 378–384

    Chapter  Google Scholar 

  45. T.E. Ford and R. Mitchell, The Ecology of Microbial Corrosion, Adv. Microb. Ecol., 1990, 11, p 231–262

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay K. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lata, S., Sharma, C. & Singh, A.K. Effect of Host Media on Microbial Influenced Corrosion due to Desulfotomaculum nigrificans . J. of Materi Eng and Perform 22, 1120–1128 (2013). https://doi.org/10.1007/s11665-012-0384-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-012-0384-z

Keywords

Navigation