Skip to main content
Log in

Corrosive Metabolic Activity of Desulfovibrio sp. on 316L Stainless Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present study investigated the effects of chemical parameters (SO4 2−, PO4 3−, Cl, pH) and the contents of extracellular polymeric substances (EPS) regarding the growth of Desulfovibrio sp. on the microbiologically induced corrosion of 316L stainless steel (SS). The experiments were carried out in laboratory-scaled test and control systems. 316L SS coupons were exposed to Desulfovibrio sp. culture over 720 h. The test coupons were removed at specific sampling times for enumeration of Desulfovibrio sp., determination of the corrosion rate by the weight loss measurement method and also for analysis of carbohydrate and protein in the EPS. The chemical parameters of the culture were also established. Biofilm/film formation and corrosion products on the 316L SS surfaces were investigated by scanning electron microscopy and energy-dispersive x-ray spectrometry analyses in the laboratory-scaled systems. It was found that Desulfovibrio sp. led to the corrosion of 316L SS. Both the amount of extracellular protein and chemical parameters (SO4 2− and PO4 3−) of the culture caused an increase in the corrosion of metal. There was a significantly positive relationship between the sessile and planktonic Desulfovibrio sp. counts (p < 0.01). It was detected that the growth phases of the sessile and planktonic Desulfovibrio sp. were different from each other and the growth phases of the sessile Desulfovibrio sp. vary depending on the subspecies of Desulfovibrio sp. and the type of metal when compared with the other published studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W.A. Hamilton, Sulphate Reducing Bacteria and Anaerobic Corrosion, Annu. Rev. Microbiol., 1985, 39, p 195–217

    Article  Google Scholar 

  2. B.J. Little and J.S. Lee, Microbiologically Influenced Corrosion: an Update, Int. Mater. Rev., 2014, 59(7), p 384–393

    Article  Google Scholar 

  3. G. Muyzer and A.J.M. Stams, The Ecology and Biotechnology of Sulphate Reducing Bacteria, Nat. Rev. Microbiol., 2008, 6, p 441–454

    Google Scholar 

  4. K. Ravenschlag, K. Sahm, C. Knoblauch, B.B. Jørgensen, and R. Amann, Community Structure, Cellular rRNA Content, and Activity of Sulfate-reducing Bacteria in Marine Arctic Sediments, Appl. Environ. Microbiol., 2000, 66, p 3592–3602

    Article  Google Scholar 

  5. C. Jeanthon, S. L’Haridon, V. Cueff, A. Banta, A.L. Reysenbach, and D. Prieur, Thermodesulfobacterium hydrogeniphilum sp. nov., a Thermophilic, Chemolithoautotrophic, Sulfate-reducing Bacterium Isolated from a Deep-sea Hydrothermal Vent at Guaymas Basin, and Emendation of the Genus Thermodesulfobacterium, Int. J. Syst. Evol. Microbiol., 2002, 52, p 765–772

    Google Scholar 

  6. K. Knittel, A. Boetius, A. Lemke, H. Eilers, K. Lochte, O. Pfannkuche, P. Linke, and R. Amann, Activity, Distribution, and Diversity of Sulfate Reducers and Other Bacteria in Sediments above Gas Hydrate (Cascadia Margin, Oregon), Geomicrobiol J., 2003, 20, p 269–294

    Article  Google Scholar 

  7. A.M. Sen, Acidophilic Sulphate Reducing Bacteria: Candidates for Bioremediation of Acid Mine Drainage Pollution, University of Wales, Thesis, 2001

    Google Scholar 

  8. E. Ilhan-Sungur and A. Cotuk, Characterization of Sulfate Reducing Bacteria Isolated from Cooling Towers, Environ. Monit. Assess., 2005, 104(1–3), p 211–219

    Article  Google Scholar 

  9. C. Xu, Y. Zhang, G. Cheng, and W. Zhu, Corrosion and Electrochemical Behavior of 316L Stainless Steel in Sulfate-reducing and Iron-oxidizing Bacteria Solutions, Chin. J. Chem. Eng., 2006, 14(6), p 829–834

    Article  Google Scholar 

  10. S.G. Choudhary, Emerging Microbial Control Issues in Cooling Water Systems, Hydrocarb. Process, 1998, 77, p 91–102

    Google Scholar 

  11. J.W. Costerton, Z. Lewandowski, D.E. Caldwell, D.R. Korber, and H.M. Lappin-Scott, Microbial Biofilms, Annu. Rev. Microbiol., 1995, 49, p 711–745

    Article  Google Scholar 

  12. M.E. Davey and G.A. O’Toole, Microbial Biofilms: from Ecology to Molecular Genetics, Microbiol. Mol. Biol. Rev., 2000, 64, p 847–867

    Article  Google Scholar 

  13. I. Beech, V. Zinkevich, R. Tapper, and R. Gubner, Direct Involvement of an Extracellular Complex Product by a Marine Sulfate-reducing Bacterium in Deterioration of Steel, Geomicrobiol J., 1997, 15, p 121–134

    Article  Google Scholar 

  14. T.S. Rao, T.N. Sairam, B. Viswanathan, and K.V.K. Nair, Carbon Steel Corrosion by Iron Oxidising and Sulphate Reducing Bacteria in a Freshwater Cooling System, Corros. Sci., 2000, 42, p 1417–1431

    Article  Google Scholar 

  15. E. Miranda, M. Bethencourt, F.J. Botana, M.J. Cano, J.M. Sanchez-Amaya, A. Corzo, J. Garcia de Lomas, M.L. Fardeau, and B. Ollivier, Biocorrosion of Carbon Steel Alloys by a Hydrogenotrophic Sulfate-reducing Bacterium Desulfovibrio capillatus Isolated from a Mexican Oil Field Separator, Corros. Sci., 2006, 48, p 2417–2431

    Article  Google Scholar 

  16. E. Ilhan-Sungur, D. Öztürk, B. Abbas, and G. Muyzer, Diversity of Microbial Communities in Cooling Tower Water, 4th Congress of European Microbiologists, FEMS 2011, Switzerland, Geneva, 2011

    Google Scholar 

  17. P.R. Puckorius, Water Corrosion Mechanism, ASHRAE J., 1999, 41, p 57–61

    Google Scholar 

  18. T.S. Rao, J.K. Aruna, B. Anupkumar, S.V. Narasimhan, and R. Feser, Pitting Corrosion of Titanium by a Freshwater Strain of Sulfate Reducing Bacteria (Desulfovibrio vulgaris), Corros. Sci., 2005, 47, p 1071–1084

    Article  Google Scholar 

  19. A.D. Seth and R.G.J. Edyvean, The Function of Sulfate Reducing Bacteria in Corrosion of Potable Water Mains, Int. Biodeter. Biodegr., 2006, 58, p 108–111

    Article  Google Scholar 

  20. F.K. Adeeba, A.P. Patil, and T.S. Rao, Effect of Zinc Addition to Copper in Improving its Corrosion Resistance in Sulfide Polluted Synthetic Seawater, T. Indian I. Metals, 2011, 64, p 99–103

    Article  Google Scholar 

  21. W.A. Hamilton, Microbially Influenced Corrosion as a Model System for the Study of Metal Microbe Interactions: A Unifying Electron Transfer Hypothesis, Biofouling, 2003, 19(1), p 65–76

    Article  Google Scholar 

  22. R. Javaherdashti, Microbiologically Influenced Corrosion: An Engineering Insight, Springer, London, 2008

    Google Scholar 

  23. C.A.H. Von Wolzogen Kühr and L.S. Van Der Vlugt, The Graphitization of Cast Iron as an Electrochemical Process in Anaerobic Soils, Water, 1934, 18, p 147–165

    Google Scholar 

  24. R.A. King and J.D.A. Miller, Corrosion by the Sulphate-Reducing Bacteria, Nature, 1971, 233, p 491–492

    Article  Google Scholar 

  25. B.S. Rajagopal and J. Le Gall, Utilization of Cathodic Hydrogen by Hydrogen-oxidizing Bacteria, Appl. Microbiol. Biotechnol., 1989, 31(4), p 406–412

    Article  Google Scholar 

  26. P.J. Antony, S. Chongdar, P. Kumar, and R. Raman, Corrosion of 2205 Duplex Stainless Steel in Chloride Medium Containing Sulfate-reducing Bacteria, Electrochim. Acta, 2007, 52(12), p 3985–3994

    Article  Google Scholar 

  27. W.A. Hamilton and W. Lee, Biocorrosion, Sulfate Reducing Bacteria, L.L. Barton, Ed., Plenum Press, New York, 1995, p 243–264

    Chapter  Google Scholar 

  28. I.B. Beech and C.W.S. Cheung, Interactions of Exopolymers Produced by Sulphate- reducing Bacteria with Metal Ions, Int. Biodeter. Biodegrad., 1995, 35, p 59–72

    Article  Google Scholar 

  29. K.Y. Chan, L.C. Xu, and H.H.P. Fang, Anaerobic Electrochemical Corrosion of Mild Steel in the Presence of Extracellular Polymeric Substances Produced by a Culture Enriched in Sulfate-reducing Bacteria, Environ. Sci. Technol., 2002, 36, p 1720–1727

    Article  Google Scholar 

  30. M. Erbil, Korozyon (Corrosion), Türkiye Korozyon Derneği, Ankara, 2012 (in Turkish)

    Google Scholar 

  31. F. Morrison, Living in a Material World: Proper Selection of the Materials of Construction for Cooling Towers in Commercial HVAC and Industrial Applications, CTI, J., 2008, 29, p 8–33

    Google Scholar 

  32. Bureau of Energy Efficiency, Cooling Towers: Energy Efficiency in Electrical Utilities, Chapter 7, Ministry of Power, New Delhi, 2004, p 135–151

    Google Scholar 

  33. A. Singh, C. Sharma, and S. Lata, Microbial Influenced Corrosion due to Desulfovibrio desulfuricans, Anti-Corros. Method M., 2011, 58(6), p 315–322

    Article  Google Scholar 

  34. F.A. Lopes, P. Morin, R. Oliveira, and L.F. Melo, Interaction of Desulfovibrio desulfuricans Biofilms with Stainless Steel Surface and its Impact on Bacterial Metabolism, J. Appl. Microbiol., 2006, 101, p 1087–1095

    Article  Google Scholar 

  35. J.R. Postgate, The sulphate reducing bacteria, 2nd ed., Cambridge University Press, Cambridge, 1984

    Google Scholar 

  36. E. Ilhan-Sungur, N. Cansever, and A. Cotuk, Microbial Corrosion of Galvanized Steel by a Freshwater Strain of Sulphate Reducing Bacteria (Desulfovibrio sp.), Corros. Sci., 2007, 49, p 1097–1109

    Article  Google Scholar 

  37. X. Zhang, P.L. Bishop, and B.K. Kinkle, Comparison of Extraction Methods for Quantifying Extracellular Polymers in Biofilms, Water Sci. Technol., 1999, 39(7), p 211–218

    Article  Google Scholar 

  38. M. Dubois, K.A. Gilles, J.K. Hamilton, P.A. Rebers, and F. Smith, Colorimetric Method for Determination of Sugars and Related Substances, Anal. Chem., 1956, 28, p 350–356

    Article  Google Scholar 

  39. O.H. Lowry, N.J. Rosebrough, A.L. Farr, and R.J. Randall, Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem., 1951, 193(1), p 265–275

    Google Scholar 

  40. X. Sheng, Y.P. Ting, and S.O. Pehkonen, The Influence of Sulphate-reducing Bacteria Biofilm on the Corrosion of Stainless Steel AISI, 316, Corros. Sci., 2007, 49(5), p 2159–2176

    Article  Google Scholar 

  41. Practice for Preparing, Cleaning and Evaluating Corrosion Test Specimens, G1-81, Annual Book of ASTM Standards, ASTM, 1986, p 89–93

  42. American Public Health Association (APHA), Standard Methods for the Examination of Water and Wastewater, 15th ed., Washington, DC, 1981

  43. C. Campanac, L. Pineau, A. Payard, G. Baziard-Mouysset, and C. Roques, Interactions between Biocide Cationic Agents and Bacterial Biofilms, Antimicrob. Agents Chemother, 2002, 46(5), p 1469–1474

    Article  Google Scholar 

  44. S.J. Yuan and S.O. Pehkonen, AFM Study of Microbial Colonization and its Deleterious Effect on 304 Stainless Steel by Pseudomonas NCIMB 2021 and Desulfovibrio desulfuricans in Simulated Seawater, Corros. Sci., 2009, 51, p 1372–1385

    Article  Google Scholar 

  45. C.M. Santegoeds, T.G. Ferdelman, G. Muyzer, and D. De Beer, Structural and Functional Dynamics of Sulfate-reducing Populations in Bacterial Biofilms, Appl. Environ. Microbiol., 1998, 64(10), p 3731–3739

    Google Scholar 

  46. S. Lata, C. Sharma, and A. Singh, Microbial Influenced Corrosion by Thermophilic Bacteria, Cent. Eur. J. Eng., 2012, 2(1), p 113–122

    Google Scholar 

  47. E. Ilhan-Sungur, İ. Türetgen, R. Javaherdashti, and A. Çotuk, Monitoring and Disinfection of Biofilm-associated Sulfate Reducing Bacteria on Different Substrata in a Simulated Recirculating Cooling Tower System, Turk. J. Biol., 2010, 34, p 389–397

    Google Scholar 

  48. D. Ozuolmez and A. Cotuk, Biofilm Formation on Galvanized Steel by SRB Isolate Obtained from Cooling Tower Water, IUFS J. Biol., 2011, 70(2), p 35–42

    Google Scholar 

  49. P. Stoodley, K. Sauer, D.G. Davies, and J.W. Costerton, Biofilms as Complex Differentiated Communities, Annu. Rev. Microbiol., 2002, 56, p 187–209

    Article  Google Scholar 

  50. B. Minnoş, E. Ilhan-Sungur, A. Çotuk, and N. Doğruöz, Güngör and N, Cansever, The Corrosion Behaviour of Galvanized Steel in Cooling Tower Water Containing a Biocide and a Corrosion Inhibitor, Biofouling, 2013, 29(3), p 223–235

    Google Scholar 

  51. G.H. John, R.K. Noel, H.A.S. Peter, T.S. James, and T.W. Stanley, Bergey’s Manual of Determinative Bacteriology, 9th ed., Williams & Wilkins, Baltimore, 1994

    Google Scholar 

  52. G.M. Gadd, Metals and Microorganisms: A problem of Definition, FEMS Microbiol. Lett., 1992, 100(1–3), p 197–203

    Article  Google Scholar 

  53. C. White and G.M. Gadd, Mixed Sulphate-reducing Bacterial Cultures for Bioprecipitation of Toxic Metals: Factorial and Response-surface Analysis of the Effects of Dilution Rate, Sulphate Substr Conc., Microbiol., 1996, 142, p 2197–2205

    Google Scholar 

  54. M.N. Chandraprabha, N. Ahalya, M. Jyothi, and K. Natarajan, Studies on Bioremoval of Copper and Zinc by Desulfovibrio desulfuricans, J. Biochem. Technol., 2012, 3(5), p 147–150

    Google Scholar 

  55. C. Xu, Y. Zhang, G. Cheng, and W. Zhu, Localized Corrosion Behavior of 316L Stainless Steel in the Presence of Sulfate-reducing and Iron-oxidizing Bacteria, Mater. Sci. Eng., 2007, 443(1–2), p 235–241

    Article  Google Scholar 

  56. S. Lata, C. Sharma, and A.K. Singh, Comparison of Biocorrosion due to Desulfovibrio desulfuricans and Desulfotomaculum nigrificans Bacteria, J. Mater. Eng. Perform., 2013, 22, p 463–469

    Article  Google Scholar 

  57. T. Unsal-Istek, S. Arkan, E. Ilhan-Sungur and N. Cansever, The Effects of Ag-Cu Ions on the Microbial Corrosion of 316L Stainless Steel in the Presence of Desulfovibrio sp., European Corrosion Congress, EUROCORR’2014, Pisa, Italy, 2014

  58. W.P. Iverson, Direct Evidence for the Cathodic Depolarization Theory of Bacterial Corrosion, Science, 1966, 151(3713), p 986–988

    Article  Google Scholar 

  59. W.P. Iverson, Corrosion of Iron and Formation of Iron Phosphide by Desulfovibrio desulfuricans, Nature, 1968, 217, p 1265–1267

    Article  Google Scholar 

  60. F. Kuang, J. Wang, L. Yan, and D. Zhang, Effects of Sulfate-reducing Bacteria on the Corrosion Behavior of Carbon Steel, Electrochim. Acta, 2007, 52(20), p 6084–6088

    Article  Google Scholar 

  61. F.L. Roe, Z. Lewandowski, and T. Funk, Simulating Microbiologically Influenced Corrosion by Depositing Extracellular Biopolymer on Mild Steel Surfaces, Corrosion, 1996, 52(10), p 744–752

    Article  Google Scholar 

  62. H.H.P. Fang, L.C. Xu, and K.Y. Chan, Effects of Toxic Metals and Chemicals on Biofilm and Biocorrosion, Water Res., 2002, 36, p 4709–4716

    Article  Google Scholar 

  63. I.B. Beech and J. Sunner, Biocorrosion: Towards Under-standing Interactions between Biofilms and Metals, Curr. Opin. Biotechnol., 2004, 15, p 181–186

    Article  Google Scholar 

  64. J. Duan, B. Hou, and Z. Yu, Characteristics of Sulfide Corrosion Products on 316L Stainless Steel Surfaces in the Presence of Sulfate-reducing Bacteria, Mater. Sci. Eng., 2006, 26, p 624–629

    Article  Google Scholar 

  65. V. Zinkevich, I. Bogdarina, H. Kang, M.A.W. Hill, R. Tapper, and I.B. Beech, Characterisation of Exopolymers Produced by Different Isolates of Marine Sulphate-reducing Bacteria, Int. Biodeter. Biodegrad., 1996, 37(3–4), p 163–172

    Article  Google Scholar 

  66. S. Da Silva, R. Basseguy, and A. Bergel, Electron Transfer between Hydrogenase and 316L Stainless Steel: Identification of a Hydrogenase-catalyzed Cathodic Reaction in Anaerobic MIC, J. Electroanal. Chem., 2004, 561, p 93–102

    Article  Google Scholar 

  67. A.E. Broo, B. Berghult, and T. Hedberg, Copper Corrosion in Drinking Water Distribution Systems- The Influence of Water Quality, Corros. Sci., 1997, 39, p 1119–1132

    Article  Google Scholar 

  68. A.E. Broo, B. Berghult, and T. Hedberg, Drinking Water Distribution- The Effect of Natural Organic Matter (NOM) on the Corrosion of Fe and Copper, Water Sci. Technol., 1999, 40, p 17–24

    Google Scholar 

  69. Z. Tang, S. Hong, W. Xiao, and J. Taylor, Characteristics of Fe Corrosion Scales Established under Blending of Ground Surface and Saline Waters and Their Impacts on Fe Release in the Pipe Distribution System, Corros. Sci., 2006, 48, p 322–342

    Article  Google Scholar 

  70. Electric Power Research Institute, Use of Degraded Water Sources as Cooling Water in Power Plants, Consultant Report, P500-03-110, 2003

  71. I. Olefjord, B. Brox, and U. Jelvestam, Surface Composition of Stainless Steels during Anodic Dissolution and Passivation Studied by ESCA, J. Electrochem. Soc., 1985, 132(12), p 2854–2861

    Article  Google Scholar 

  72. M.T. Madigan and J.M. Martinko, Brock Biology of Microorganisms, 11th ed., Prentice Hall, London, 2005

    Google Scholar 

  73. H.C. Flemming, Biofouling in Water Systems- Cases, Causes and Countermeasures, Appl. Microbiol. Biotechnol., 2002, 59(6), p 629–640

    Article  Google Scholar 

  74. R.M. Donlan, Biofilms: Microbial Life on Surfaces, Emerg. Infect. Dis., 2002, 8(9), p 881–890

    Article  Google Scholar 

  75. H.A. Videla and L.K. Herrera, Microbiologically Influenced Corrosion: Looking to the Future, Int. Microbiol., 2005, 8(3), p 169–180

    Google Scholar 

  76. G. Chen and C.R. Clayton, Influence of Sulfate-reducing Bacteria on the Passivity of Type 304 Austenitic Stainless Steel, J. Electrochem. Soc., 1997, 144(9), p 3140–3146

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) (National Grants of TÜBİTAK Intended for Priority Fields, 2210-C) and by the Research Fund of Istanbul University (Project Numbers: 36473, 41046 and UDP-44789).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simge Arkan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arkan, S., Ilhan-Sungur, E. & Cansever, N. Corrosive Metabolic Activity of Desulfovibrio sp. on 316L Stainless Steel. J. of Materi Eng and Perform 25, 5352–5362 (2016). https://doi.org/10.1007/s11665-016-2371-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2371-2

Keywords

Navigation