Skip to main content
Log in

Transformations in Sol-Gel Synthesized Nanoscale Hydroxyapatite Calcined Under Different Temperatures and Time Conditions

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Nano-hydroxyapatite (HAP) has been synthesized using sol-gel technique. Calcium nitrate tetrahydrate and potassium dihydrogen phosphate were used as precursors for calcium and phosphorus, respectively. A detailed study on its transformation during calcination at two crucial temperatures has been undertaken. The synthesized nanopowder was calcined at 600 and 800 °C for different time periods. The results revealed that the obtained powders after calcining at 600 and 800 °C are composed of hydroxyapatite nanoparticles. The nano-HAP powders were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, thermal gravimetric analysis (TGA), and BET surface area analyzer techniques. The results indicate that crystallite size as well as crystallinity of synthesized HAP nanopowders increase with increase in calcination temperature as well as calcination time, but the effect of temperature is more prominent as compared to that of calcination time. TEM micrograph revealed the presence of majority of HAP powder particles as agglomerates and a few as individual particles. It also revealed that HAP produced after sintering at 600 °C is 26-45 nm in size, which is well in agreement with the crystallite size calculated using XRD data. TGA study showed the thermal stability of the as-synthesized nano-HAP powder. The BET surface area decreased with increase in calcination temperature and time. The results clearly demonstrate the significant role of calcination parameters on the characteristics of nano-HAP powders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Langer and J.P. Vacanti, Tissue Engineering, Science, 1993, 260, p 920–926

    Article  CAS  Google Scholar 

  2. S.W. Laurie, L.B. Kaban, J.B. Mullikan, and J.E. Murray, Donor-Site Morbidity After Harvesting Rib and Iliac Bone, Plast. Reconstr. Surg., 1984, 73, p 933–938

    Article  CAS  Google Scholar 

  3. R.Z. LeGeros, Calcium Phosphate-Based Osteoinductive Materials, Chem. Rev., 2008, 108, p 4742–4753

    Article  Google Scholar 

  4. M. Descamps, O. Richart, P. Hardouin, J.C. Hornez, and A. Leriche, Synthesis of Macroporous β-Tricalcium Phosphate with Controlled Porous Architectural, Ceram. Int., 2008, 34, p 1131–1137

    Article  CAS  Google Scholar 

  5. K. Cheng, W. Weng, G. Han, P. Du, G. Shen, J. Yang, and J.M.F. Ferreira, The Effect of Triethanolamine on the Formation of Sol-Gel Derived Fluoroapatite/Hydroxyapatite Solid Solution, Mater. Chem. Phys., 2003, 78, p 767–771

    Article  CAS  Google Scholar 

  6. L.Y. Huang, K.-W. Xu, and J. Lu, A Study of the Process and Kinetics of Electrochemical Deposition and the Hydrothermal Synthesis of Hydroxyapatite Coatings, J. Mater. Sci. Mater. Med., 2000, 11, p 667–673

    Article  CAS  Google Scholar 

  7. W. Weng, G. Han, P. Du, and G. Shen, The Effect of Citric Acid Addition on the Formation of Sol-Gel Derived Hydroxyapatite, Mater. Chem. Phys., 2002, 74, p 92–97

    Article  CAS  Google Scholar 

  8. W. Weng and J.L. Baptista, Alkoxide Route for Preparing Hydroxyapatite and Its Coatings, Biomaterials, 1998, 19, p 125–131

    Article  CAS  Google Scholar 

  9. K. Cheng, G. Han, W. Weng, H. Qu, P. Du, G. Shen, J. Yang, and J.M.F. Ferreira, Sol-gel Derived Fluorinated Hydroxyapatite Films, Mater. Res. Bull., 2003, 38, p 89–97

    Article  CAS  Google Scholar 

  10. H.W. Kim, H.E. Kim, and V. Salih, Stimulation of Osteoblast Responses to Biomimetic Nanocomposites of Gelatin-Hydroxyapatite for Tissue Engineering Scaffolds, Biomaterials, 2005, 26, p 5221–5230

    Article  CAS  Google Scholar 

  11. M. Sato, M.A. Sambito, A. Aslani, N.M. Kalkhoran, E.B. Slamovich, and T.J. Webster, Increased Osteoblast Functions on Undoped and Yttrium-Doped Nanocrystalline Hydroxyapatite Coatings on Titanium, Biomaterials, 2006, 27, p 2358–2369

    Article  CAS  Google Scholar 

  12. E.S. Thian, J. Huang, S.M. Best, Z.H. Barber, R.A. Brooks, N. Rushton, and W. Bonfield, The Response of Osteoblasts to Nanocrystalline Silicon-Substituted Hydroxyapatite Thin Films, Biomaterials, 2006, 27, p 2692–2698

    Article  CAS  Google Scholar 

  13. Z.L. Shi, X. Huang, Y.R. Cai, R.K. Tang, and D.S. Yang, Size Effect of Hydroxyapatite Nanoparticles on Proliferation and Apoptosis of Osteoblast-Like Cells, Acta Biomater., 2009, 5, p 338–345

    Article  CAS  Google Scholar 

  14. Y. Liu, G. Wang, Y. Cai, H. Ji, G. Zhou, X. Zhao, R. Tang, and M. Zhang, In Vitro Effects of Nanophase Hydroxyapatite Particles on Proliferation and Osteogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells, J. Biomed. Mater. Res. A, 2009, 90, p 1083–1091

    Google Scholar 

  15. W. Kim, Q. Zhang, and F. Saito, Mechanochemical Synthesis of Hydroxyapatite from Ca(OH)2-P2O5 and CaO-Ca(OH)2-P2O5 Mixtures, J. Mater. Sci., 2000, 35, p 5401–5405

    Article  CAS  Google Scholar 

  16. A.C. Tas, Combustion Synthesis of Calcium Phosphate Bioceramic Powders, J. Eur. Ceram. Soc., 2000, 20, p 2389–2394

    Article  CAS  Google Scholar 

  17. A. Lopez-Macipe, R. Rodriguez-Clemente, A. Hidalgo-Lopez, I. Arita, M.V. Garcia-Garduno, E. Rivera, and V.M. Castano, Wet Chemical Synthesis of Hydroxyapatite Particles from Nonstoichiometric Solutions, J. Mater. Synth. Proc., 1998, 6, p 21–26

    Article  CAS  Google Scholar 

  18. W. Wenjian and J.L. Baptista, Alkoxide route for preparing hydroxyapatite and its coatings. Biomaterials 1998, 19, p 125–131

    Article  Google Scholar 

  19. M. Yoshimura, H. Suda, K. Okamoto, and K. Loku, Hydrothermal Synthesis of Biocompatible Whiskers, J. Mater. Sci., 1994, 29, p 3399–3402

    Article  CAS  Google Scholar 

  20. G.K. Lim, J. Wang, S.C. Ng, C.H. Chew, and L.M. Gan, Nanosized Hydroxyapatite Powders from Microemulsions and Emulsions Stabilized by a Biodegradable Surfactant, J. Mater. Chem., 1999, 9, p 1635–1639

    Article  CAS  Google Scholar 

  21. M.H. Fathi and A. Hanifi, Evaluation and Characterization of Nanostructure Hydroxyapatite Powder Prepared by Simple Sol-Gel Method, Mater. Lett., 2007, 61, p 3978–3983

    Article  CAS  Google Scholar 

  22. M.H. Fathi, A. Hanifi, and V. Mortazavi, Preparation and Bioactivity Evaluation of Bone-Like Hydroxyapatite Nanopowder, J. Mater. Process. Technol., 2008, 202, p 536–542

    Article  CAS  Google Scholar 

  23. S.K. Padmanabhan, A. Balakrishnan, M.C. Chu, Y.J. Lee, T.N. Kim, and S.J. Cho, Solgel Synthesis and Characterization of Hydroxyapatite Nanorods, Particuology, 2009, 7, p 466–470

    Article  CAS  Google Scholar 

  24. R. Joseph and K.E. Tanner, Effect of Morphological Features and Surface Area of Hydroxyapatite on the Fatigue Behavior of Hydroxyapatite-Polyethylene Composites, Biomacromolecules, 2005, 6, p 1021–1026

    Article  CAS  Google Scholar 

  25. L. Clausen and I. Fabricius, BET Measurements: Outgassing of Minerals, J. Colloid Interface Sci., 2000, 227, p 7–15

    Article  CAS  Google Scholar 

  26. T.J. Webster, E.A. Massa-Schlueter, J.L. Smith, and E.B. Slamovich, Osteoblast Response to Hydroxyapatite Doped with Divalent and Trivalent Cations, Biomaterials, 2004, 25, p 2111–2121

    Article  CAS  Google Scholar 

  27. R. Jenkins and R.L. Snyder, Introduction to X-ray Powder Diffractometry, Wiley, New York, 1996

    Google Scholar 

  28. E. Landi, A. Tampieri, G. Celotti, and S. Sprio, Densification Behaviour and Mechanisms of Synthetic Hydroxyapatite, J. Eur. Ceram. Soc., 2000, 20, p 2377–2387

    Article  CAS  Google Scholar 

  29. J.C. Elliot, Structure and Chemistry of the Apatites and Other Calcium Orthophosphates, Elsevier, Amsterdam, 1994

    Google Scholar 

  30. M. Giardina and M.A. Fanovich, Synthesis of Nanocrystalline Hydroxyapatite from Ca(OH)2 and H3PO4 Assisted by Ultrasonic Irradiation, Ceram. Int., 2010, 36, p 1961–1969

    Article  CAS  Google Scholar 

  31. D. Gopi, K.M. Govindaraju, C.A.P. Victor, L. Kavitha, and N. Rajendiran, Spectroscopic Investigations of Nanohydroxyapatite Powders Synthesized by Conventional and Ultrasonic Coupled Sol-Gel Routes, Spectrochim. Acta A, 2008, 70, p 1243–1245

    Article  CAS  Google Scholar 

  32. S. Raynaud, E. Champion, and B. Assollant, Calcium Phosphate Apatite with Variable Ca/P Atomic Ratio II: Calcination and Sintering, Biomaterials, 2002, 23, p 1073–1080

    Article  CAS  Google Scholar 

  33. S. Bose and S.K. Saha, Synthesis and Characterization of Hydroxyapatite Nanopowders by Emulsion Technique, Chem. Mater., 2003, 15, p 4464–4469

    Article  CAS  Google Scholar 

  34. A. Bianco, I. Cacciotti, M. Lombardi, and L. Montanaro, Si-Substituted Hydroxyapatite Nanopowders: Synthesis, Thermal Stability and Sinterability, Mater. Res. Bull., 2009, 44, p 345–354

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Batra Uma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seema, K., Uma, B. & Suchita, K. Transformations in Sol-Gel Synthesized Nanoscale Hydroxyapatite Calcined Under Different Temperatures and Time Conditions. J. of Materi Eng and Perform 21, 1737–1743 (2012). https://doi.org/10.1007/s11665-011-0059-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-011-0059-1

Keywords

Navigation