Skip to main content

Advertisement

Log in

Thermal Expansion and Phase Stability Investigations on Cs-Substituted Nanocrystalline Calcium Hydroxyapatites

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The high-temperature phase stability of Ca10−x Cs x (PO4)6(OH)2, (x = 0–3) compositions synthesized by various wet chemical methods was investigated. The thermal expansion property of Ca10(PO4)6(OH)2 (abbreviated as CaHAp) and Cs-substituted CaHAp was measured by high-temperature XRD and dilatometry. The average crystallite size of the powders synthesized by wet chemical methods was found to be 10–50 nm range as shown by XRD and TEM. Up to 30 mol% Cs loading was observed to show only the apatite phase by XRD when the apatite powder was nanocrystalline in nature. However, high-temperature stability of the Cs-substituted system is limited to ≤5 mol%. Cs3(PO4) is observed to be separated out on heating the material above 773 K for compositions substituted with more than 5 mol% of Cs in the Ca-sublattice. The coefficient of thermal expansion measured by HTXRD is αa = 12.42 × 10−6 K−1, αc = 14.98 × 10−6 K−1; and αa = 12.62 × 10−6 K−1, αc = 12.57 × 10−6 K−1 for CaHAp and Ca9.78Cs0.2(PO4)6(OH)1.96, respectively, in the temperature range of 298-1083 K. Bulk thermal expansion measurements are seen to be in agreement with the lattice expansion results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Mathew and S. Tagaki, Structures of Biological Materials in Dental Research, J. Res. Natl Inst. Stand. Technol., 2001, 106(6), p 1035–1044

    CAS  Google Scholar 

  2. M. Wei, J.H. Evans, T. Bostrom, and L. Grøndhal, Synthesis and Characterization of Hydroxyapatite, Fluoride-Substituted Hydroxyapatite and Fluorapatite, J. Mater. Sci. Mater. Med., 2003, 14, p 311–320

    Article  CAS  Google Scholar 

  3. M.E. Fleet and Y. Pan, Site Preference of Nd in Fluorapatite [Ca10 (PO4)6F2], J. Solid State Chem., 1994, 112, p 78–81

    Article  CAS  Google Scholar 

  4. P. Trocellier, Immobilization of Radionuclides in Single-Phase Crystalline Waste Forms: A Review on Their Intrinsic Properties and Long Term Behaviour, Ann. Chim. Sci. Mat., 2000, 25, p 321–337

    Article  CAS  Google Scholar 

  5. J.O. Nriagu, Lead Orthophosphates. IV. Formation and Stability in the Environment, Geochim. Cosmochim. Acta, 1974, 38, p 887–898

    Article  CAS  Google Scholar 

  6. J.O. Nriagu, Lead Orthophosphates—II. Stability of Cholopyromophite at 25 °C, Geochim. Cosmochim. Acta, 1973, 37, p 367–377

    Article  CAS  Google Scholar 

  7. J.O. Nriagu, Lead Orthophosphates—III. Stabilities of Fluoropyromorphite and Bromopyromorphite at 25 °C, Geochim. Cosmochim. Acta, 1973, 37, p 1735–1743

    Article  CAS  Google Scholar 

  8. L.S. Keto and S.B. Jacobsen, Nd and Sr Isotopic Variations of Early Paleozoic Oceans, Earth and Planet, Sci. Lett., 1987, 84, p 27–41

    CAS  Google Scholar 

  9. J.L. Conca and J. Wright, An Apatite II, Permeable Reactive Barrier to Remediate Groundwater Containing Zn, Pb and Cd, Appl. Geochem., 2006, 21, p 1288–1300

    Article  CAS  Google Scholar 

  10. X. Chen, J.V. Wright, J.L. Conca, and L.M. Peurrung, Effects of pH on Heavy Metal Sorption on Mineral Apatite, Environ. Sci. Technol., 1997, 31(3), p 624–631

    Article  CAS  Google Scholar 

  11. M.I. Kay, R.A. Young, and A.S. Posner, Crystal Structure of Hydroxyapatite, Nature, 1964, 204, p 1050–1052

    Article  CAS  Google Scholar 

  12. A. Chartier, C. Meis, and J.D. Gale, Computational Study of Cs Immobilization in the Apatites Ca10(PO4)6F2, Ca4La6(SiO4)6F2 and Ca2La8(SiO4)6O2, Phy. Rev. B, 2001, 64, p 9–085110

    Article  Google Scholar 

  13. H. Jena, R. Asuvathraman, and K.V.G. Kutty, Phase Stability and Thermal Expansion Studies on Cs-Substituted Nano-Crystalline Ca-Hydroxyapatites Synthesized by Novel Wet Chemical Methods, Proceedings of 16th National Symposium on Thermal Analysis (THERMANS-2008), S. Varma et al., Ed., 4-6 Feb, 2008, IGCAR, Kalpakkam, India, p 202–204

  14. B.D. Cullity and S.R. Stock, Elements of X-Ray Diffraction, 3rd ed., Prentice-Hall Inc, Upper Saddle River, 2001, p 167–171

    Google Scholar 

  15. R. Jenkins and R.L. Snyder, Introduction to X-ray Powder Diffractometry, Wiley & Sons Inc, New York, 1996, p 89–91

    Google Scholar 

  16. K.V. Govindan Kutty, R. Asuvathraman, M.V. Krishnaiah, V. Ganesan, R. Parthasarathy, D. Sai Subalakshmi, B. Suhasini, K.C. Srinivas, K.A Gopal, and P.V. Kumar, Design, Fabrication and Commissioning of a Push Rod Dilatometer for Thermal Expansion Studies on Solids, IGC-283, Indira Gandhi Centre for Atomic Research, Kalpakkam, India, 2006

  17. H. Jena, Ch.V. Rao, F.P. Eddy, J. Dooley, and B. Rambabu, Structural and Proton Transport Studies on Nano-Crystalline [Ca10(PO4)6(OH)2] (HAp), HAp-Nafion® Composite, and Natural Human Bbone, Phys. Status Solidi A, 2009, 206(11), p 2536–2541

    Article  CAS  Google Scholar 

  18. H. Fernandez-Morán and A. Engström, Electron Microscopy and X-ray Diffraction of Bone, Biochim. Biophys. Acta, 1957, 23, p 260–264

    Article  Google Scholar 

  19. R.D. Shannon, Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Cryst., 1976, A32, p 751–767

    CAS  Google Scholar 

  20. S. Koutsopoulos, Synthesis and Characterization of Hydroxyapatite Crystals: A Review Study on the Analytical Methods, J. Biomed. Mater. Res., 2002, 62, p 600–612

    Article  CAS  Google Scholar 

  21. H. Yu, H. Zhang, X. Wang, Z. Gu, X. Li, and F. Deng, Local Structure of Hydroxy Peroxy Apatite: A Combined XRD, FT-IR, Raman, SEM, and Solid State NMR Study, J. Phys. Chem. Solid, 2007, 68(10), p 1863–1871

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hrudananda Jena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jena, H., Asuvathraman, R. & Govindan Kutty, K.V. Thermal Expansion and Phase Stability Investigations on Cs-Substituted Nanocrystalline Calcium Hydroxyapatites. J. of Materi Eng and Perform 20, 108–113 (2011). https://doi.org/10.1007/s11665-010-9651-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-010-9651-z

Keywords

Navigation