Skip to main content
Log in

Microstructure coarsening during thermo-mechanical fatigue of Pb-Sn solder joints

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Phase coarsening in as-cast solder joints produced by isothermal annealing and by thermo-mechanical cycling (TMC) (-30 to 130°C) was determined and its influence on the plastic deformation kinetics of 63Sn37Pb solder joints was investigated by stress relaxation (SR) tests. The static, isothermal coarsening kinetics were in accord with Senkov-Myshlyaev’s theory. The rate of coarsening by TMC was appreciably greater than that by isothermal annealing. The SR curves following TMC exhibited two regions with a stress exponent n > 5 at high stresses (Region A) and n ≈ 2-3 at low stresses (Region B). In both regions, the stress exponent varied in an irregular manner with the mean phase size. In Region A the plastic strain rate at a constant value of τn (τ = shear stress) was relatively independent of the average phase size, while in Region B the strain rate increased with increase in phase size. The activation energy in both regions appeared to be that for lattice diffusion. Possible reasons for the anomalous effects of phase size on the plastic deformation kinetics are offered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.A. Mohamed and T.G. Langdon, Phil. Mag. 32,697 (1975).

    Article  CAS  Google Scholar 

  2. T.G. Langdon and F.A. Mohamed, Scripta Metall. 11, 575 (1977).

    Article  CAS  Google Scholar 

  3. D. Grivas, K.L. Murty and J.W. Morris, Acta Metall. 27, 731 (1979).

    Article  CAS  Google Scholar 

  4. R. Arrowood, A. Mukherjee and W.B. Jones, Solder Mechanics (Warrendale, PA: TMS, 1991), p. 107.

    Google Scholar 

  5. A. Nadai and P.G. McVetty, Proc. ASTM 43, 735 (ASTM, 1943).

    CAS  Google Scholar 

  6. H. Conrad, Trans. ASME J. Basic Engr. 81, 617 (1959).

    Google Scholar 

  7. F. Garofalo, Trans. AIME 227, 351 (1963).

    Google Scholar 

  8. F. Garofalo, Fundamentals of Creep and Creep-Rupture in Metals, (New York: Macmillan, 1965).

    Google Scholar 

  9. Z. Guo, A.F. Sprecher and H. Conrad, ASME Trans. J. Electronic Pkg. 14, 114(1992).

    Google Scholar 

  10. Z. Guo and H. Conrad, Proc. 43rd Electronics Components Tech. Conf. (ECTC) CHMT (New York: IEEE, 1993), p. 831.

    Google Scholar 

  11. J. Weertman, J. Appl. Phys. 26,1213 (1955); 27, 832 (1956); 28,1185 (1957).

    Article  CAS  Google Scholar 

  12. J. Weertman, Rate Processes in Plastic Deformation of Materials, eds. J.C.M. Li and A.K. Mukherjee, (Metals Park, OH: ASM, 1975), p. 315.

    Google Scholar 

  13. J.E. Bird, A.K. Mukherjee and J.E. Dorn, Quantitative Relation Between Properties and Microstructure, D.G. Brandon and A. Rosen, eds., (Jerusalem: Israel Univ. Press, 1969), p. 255.

    Google Scholar 

  14. M.C. Shine and L.R. Fox, Low Cycle Fatigue, ASTM STP 942, ed. H. D. Solomon, (Philadelphia: ASTM, 1988), p. 588.

    Google Scholar 

  15. Z. Mai, D. Grivas, M.C. Shine and J.W. Morris, J. Electron. Mater. 19, 1273 (1990).

    Google Scholar 

  16. Z. Guo and H. Conrad, ASME Trans. J. Electronic Pkg. 118, 49 (1996).

    Google Scholar 

  17. P.L. Hacke, A.F. Sprecher and H. Conrad, Thermomechanical Fatigue Behavior of Materials, ASTM STP 1186, (Philadelphia: ASTM.1993), p. 91.

    Google Scholar 

  18. P.L. Hacke, A.F. Sprecher and H. Conrad, Thermal Stress and Strain in Microelectronics Packaging, ed. J. H. Lau, (New York: Van Nostrand Reinhold, 1993), p. 467.

    Google Scholar 

  19. P.L. Hacke, A.F. Sprecher and H. Conrad, ASME Trans. J. Electronic Pkg. 115, 153 (1993).

    Google Scholar 

  20. O.N. Senkov and M.M. Myschlyaev, Ada Metall. 34, 97 (1986).

    Article  CAS  Google Scholar 

  21. B. Okkerse, Acta Metall. 2 551 (1954).

    Article  Google Scholar 

  22. W. Lange and D. Bergner, Phys. Stat. Sol. 2,1410 (1962).

    Article  CAS  Google Scholar 

  23. J.W. Morris and Z. Mei, Solder Mechanics, eds. D.R. Frear, W.B. Jones and K.R. Kinsman, (Warrendale, PA: TMS, 1991), p. 239.

    Google Scholar 

  24. Z. Guo and H. Conrad, ASME Trans. J. Electronic Pkg. 115, 159 (1993).

    Article  Google Scholar 

  25. J. Askim, Tracer Diffusion Data, (New York: Plenum, 1970).

    Google Scholar 

  26. J.H. Schneibel and P.M. Hazzledine, Scripta Metall. 11,935 (1977).

    Google Scholar 

  27. J.H. Schneibel, Acta Metall. 28, 1527 (1980).

    Article  CAS  Google Scholar 

  28. J.H. Schneibel and P.M. Hazzledine, Acta Metall. 30, 1223 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hacke, P.L., Sprecher, A.F. & Conrad, H. Microstructure coarsening during thermo-mechanical fatigue of Pb-Sn solder joints. J. Electron. Mater. 26, 774–782 (1997). https://doi.org/10.1007/s11664-997-0251-0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-997-0251-0

Key words

Navigation