Skip to main content
Log in

Influences of original solder grain orientation on thermal fatigue damage and microstructure evolution of the SnAgCu/Cu solder joints revealed by in-situ characterization

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To intuitively reveal the influences of original solder grain orientation on thermal fatigue damage mechanisms of the SnAgCu/Cu solder joints at relatively high temperature, in this study the solder joints were prepared, and their thermal fatigue damage and microstructure evolution processes were in-situ characterized. It was found that most of the solder joints are single crystal, and the others have 2 or 3 solder grains. Under the thermal cycling of 20 °C ~ 140 °C, the interfacial strain concentration is more serious than that cycled at relatively low temperature, and the damage accumulation rate is higher. The original solder grain orientation determines the activation of slip systems and the plastic deformation degree, especially at the interfacial strain concentration zone. Due to softening of the solder and the high recovery rate, deformation of the solder not close to the joint interface is not very serious. The slip bands are not straight, and the activated slip systems are the {110}<001 > and {100}<001 > systems, but different slip systems can be activated at different zones within one solder grain. For the solder joints with 2 or 3 solder grains, deformation of the grain with higher Schmidt factor is restricted by the other grains, and the deformation mismatch resulting in grain boundary (GB) sliding. The high temperature recovery and relative torsion between different parts of the solder grains form new low-angle GBs. For a group of solder joints, the joint most susceptible to deformation determines the life of the device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data will be made available on request.

References

  1. M. Abtew, G. Selvaduray, Mater. Sci. Eng. R. 27, 95 (2000). https://doi.org/10.1016/S0927-796X(00)00010-3

    Article  Google Scholar 

  2. Y. Li, C.P. Wong, Mater. Sci. Eng. R. 51, 1 (2006). https://doi.org/10.1016/j.mser.2006.01.001

    Article  CAS  Google Scholar 

  3. B. Agostini, M. Fabbri, J.E. Park, L. Wojtan, J.R. Thome, B. Michel, Heat. Transf. Eng. 28, 258 (2007). https://doi.org/10.1080/01457630601117799

    Article  ADS  CAS  Google Scholar 

  4. S.V. Garimella, A.S. Fleischer, J.Y. Murthy, A. Keshavarzi, R. Prasher, C. Patel, S.H. Bhavnani, R. Venkatasubramanian, R. Mahajan, Y. Joshi, B. Sammakia, B.A. Myers, L. Chorosinski, M. Baelmans, P. Sathyamurthy, P.E. Raad, IEEE T Compon. Pack. T. 31, 801 (2008). https://doi.org/10.1109/TCAPT.2008.2001197

    Article  Google Scholar 

  5. V. Samavatian, H. Iman-Eini, Y. Avenas, M. Samavatian, J. Electron. Mater. 51, 5376 (2022). https://doi.org/10.1007/s11664-022-09777-3

    Article  ADS  CAS  Google Scholar 

  6. F.Q. Lang, H. Yamaguchi, H. Ohashi, H. Sato, J. Electron. Mater. 40, 1563 (2011). https://doi.org/10.1007/s11664-011-1661-6

    Article  ADS  CAS  Google Scholar 

  7. J.A. Depiver, S. Mallik, E.H. Amalu, Eng. Fail. Anal. 125, 105447 (2021). https://doi.org/10.1016/j.engfailanal.2021.105447

    Article  CAS  Google Scholar 

  8. C.Y. Cai, J.F. Xu, H.Y. Wang, S.B. Park, Microelectron. Reliab. 119, 114065 (2021). https://doi.org/10.1016/j.microrel.2021.114065

    Article  CAS  Google Scholar 

  9. Y.F. Zhang, K.K. Wu, H. Li, S.N. Shen, W. Cao, F. Li, J.Z. Han, Microelectron. Reliab. 139, 114829 (2022). https://doi.org/10.1016/j.microrel.2022.114829

    Article  CAS  Google Scholar 

  10. Q.K. Zhang, Z.F. Zhang, Mater. Sci. Eng. A 580, 374 (2013). https://doi.org/10.1016/j.msea.2013.05.061

    Article  CAS  Google Scholar 

  11. P. Borgesen, L. Wentlent, S. Hamasha, S. Khasawneh, S. Shirazi, D. Schmitz, T. Alghoul, C. Greene, L. Yin, J. Electron. Mater. 47, 2526 (2018). https://doi.org/10.1007/s11664-018-6121-0

    Article  ADS  CAS  Google Scholar 

  12. X.C. Wang, X.L. Ji, Y.H. Du, Y.S. Wang, F. Guo, J. Mater. Sci. 58, 4199 (2023). https://doi.org/10.1007/s10853-023-08280-2

    Article  ADS  CAS  Google Scholar 

  13. Q. Zhou, T.K. Lee, T.R. Bieler, Mater. Sci. Eng. A 802, 140584 (2021). https://doi.org/10.1016/j.msea.2020.140584

    Article  CAS  Google Scholar 

  14. C.W. An, Q.K. Zhang, Z.L. Song, J. Electron. Mater. 52, 3807 (2023). https://doi.org/10.1007/s11664-023-10379-w

    Article  ADS  CAS  Google Scholar 

  15. M.W. Xie, G.A. Chen, Int. J. Plast. 159, 103465 (2022). https://doi.org/10.1016/j.ijplas.2022.103465

    Article  CAS  Google Scholar 

  16. X.Y. Niu, W. Li, G.X. Wang, X.F. Shu, J. Mater. Sci: Mater. Electron. 26, 601 (2015). https://doi.org/10.1007/s10854-014-2441-x

    Article  CAS  Google Scholar 

  17. I. Shohji, T. Yoshida, T. Takahashi, S. Hioki, Mater. Sci. Eng. A 36, 50 (2004). https://doi.org/10.1016/j.msea.2003.09.057

    Article  CAS  Google Scholar 

  18. Y. Tian, Y.S. Wang, F. Guo, L.M. Ma, J. Han, J. Electron. Mater. 48, 2770 (2019). https://doi.org/10.1007/s11664-018-06907-8

    Article  ADS  CAS  Google Scholar 

  19. F.Q. Yang, J.C.M. Li, J.M. Sci, Mater. Electron. 18, 191 (2007). https://doi.org/10.1007/s10854-006-9016-4

    Article  CAS  Google Scholar 

  20. E.H. Amalu, N.N. Ekere, Comp. Mater. Sci. 65, 470 (2012). https://doi.org/10.1016/j.commatsci.2012.08.005

    Article  CAS  Google Scholar 

  21. T.H. Gu, Y.L. Xu, C.M. Gourlay, B.T. Britton, Scripta Mater. 175, 5560 (2020). https://doi.org/10.1016/j.scriptamat.2019.09.003

    Article  CAS  Google Scholar 

  22. Q.H. Li, W. Zhao, W. Zhang, W.W. Chen, Z.Q. Liu, Int. J. Fatigue. 167, 107356 (2023). https://doi.org/10.1016/j.ijfatigue.2022.107356

    Article  CAS  Google Scholar 

  23. Q.K. Zhang, Z.F. Zhang, Acta Mater. 59, 6017 (2011). https://doi.org/10.1016/j.actamat.2011.06.010

    Article  ADS  CAS  Google Scholar 

  24. Q.K. Zhang, F.Q. Hu, Z.L. Song, Z.F. Zhang, Mater. Sci. Eng. A 701, 187 (2017). https://doi.org/10.1016/j.msea.2017.06.083

    Article  CAS  Google Scholar 

  25. R.J. McCabe, M.E. Fine, Metall. Mater. Trans. A 33, 1531 (2002). https://doi.org/10.1007/s11661-002-0075-8

    Article  Google Scholar 

  26. A. Kanjilal, P.R. Narayanan, M. Agilan, P. Kumar, J. Electron. Mater. 52, 739 (2023). https://doi.org/10.1007/s11664-022-10065-3

    Article  ADS  CAS  Google Scholar 

  27. Y.L. Xu, T.H. Gu, J.W. Xian, F. Giuliani, T. Ben Britton, C.M. Gourlay, F.P.E. Dunne, Int. J. Plast. 137, 102904 (2021). https://doi.org/10.1016/j.ijplas.2020.102904

    Article  CAS  Google Scholar 

  28. X. Long, X. He, Y. Yao, J. Mater. Sci. 52, 6120 (2017). https://doi.org/10.1007/s10853-017-0851-x

    Article  ADS  CAS  Google Scholar 

  29. H.T. Chen, J. Han, M.Y. Li, J. Electron. Mater. 40, 2470 (2011). https://doi.org/10.1007/s11664-011-1782-y

    Article  ADS  CAS  Google Scholar 

  30. M. Maleki, J. Cugnoni, J. Botsis, Mater. Sci. Eng. A 661, 132 (2016). https://doi.org/10.1016/j.msea.2016.03.011

    Article  CAS  Google Scholar 

  31. J. Han, F. Guo, J.P. Liu, J. Alloy Compd. 698, 706 (2017). https://doi.org/10.1016/j.jallcom.2016.12.281

    Article  CAS  Google Scholar 

  32. W.H. Chen, P. Sarobol, C.A. Handwerker, J.E. Blendell, JOM. 68, 2888 (2016). https://doi.org/10.1007/s11837-016-2070-3

    Article  CAS  Google Scholar 

  33. R.T. Gao, X.Y. Li, Y.X. Zhu, J. Mater. Sci: Mater. Electron. 26, 2175 (2015). https://doi.org/10.1007/s10854-015-2664-5

    Article  CAS  Google Scholar 

  34. Y.L. Xu, J.W. Xian, S. Stoyanov, C. Bailey, R.J. Coyle, C.M. Gourlay, F.P.E. Dunne, Int. J. Plast. 155, 103308 (2022). https://doi.org/10.1016/j.ijplas.2022.103308

    Article  CAS  Google Scholar 

  35. M.W. Xie, G. Chen, X.X. Yuan, L. Zhang, Q. Lin, J. Mater. Res. Technol. 27, 7195 (2023). https://doi.org/10.1016/j.jmrt.2023.11.113

    Article  CAS  Google Scholar 

  36. X. Wei, A. Alahmer, H. Ali, S. Tahat, P.P. Vyas, S. Hamasha, Microelectron. Reliab. 146, 115031 (2023). https://doi.org/10.1016/j.microrel.2023.115031

    Article  Google Scholar 

  37. Y.D. Han, H.Y. Jing, S.M.L. Nai, L.Y. Xu, C.M. Tan, J. Wei, J. Electron. Mater. 39, 223 (2010). https://doi.org/10.1007/s11664-009-0970-5

    Article  ADS  CAS  Google Scholar 

  38. A.K. Gain, L.C. Zhang, J. Mater. Sci. 54, 12863 (2019). https://doi.org/10.1007/s10853-019-03784-2

    Article  ADS  CAS  Google Scholar 

  39. J.T. He, Y. Ling, D. Lei, Ceram. Int. 49, 27445 (2023). https://doi.org/10.1016/j.ceramint.2023.06.017

    Article  CAS  Google Scholar 

  40. H.B. Qin, X.P. Zhang, M.B. Zhou, X.P. Li, Y.W. Mai, Microelectron. Reliab. 55, 1214 (2015). https://doi.org/10.1016/j.microrel.2015.05.013

    Article  CAS  Google Scholar 

  41. H.T. Lee, K.C. Huang, J. Electron. Mater. 45, 6102 (2016). https://doi.org/10.1007/s11664-016-4773-1

    Article  ADS  CAS  Google Scholar 

Download references

Funding

The authors wish to acknowledge the financial support of the National Natural Science Foundation of China (52001317), and the “Scientific and Technological Innovation 2025” Major Special Project of Ningbo City under Grant nos. 2021Z049 and 2020Z039.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [Qingke Zhang], [Chenwei An]. The first draft of the manuscript was written by [Qingke Zhang] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Qingke Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., An, C. & Song, Z. Influences of original solder grain orientation on thermal fatigue damage and microstructure evolution of the SnAgCu/Cu solder joints revealed by in-situ characterization. J Mater Sci: Mater Electron 35, 306 (2024). https://doi.org/10.1007/s10854-024-12067-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12067-9

Navigation