Skip to main content

Advertisement

Log in

Application of Nickel Foam in Electrochemical Systems: A Review

  • Review Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effectiveness of electrochemical systems in various applications (e.g., energy storage and conversion, wastewater treatment, ammonia synthesis) is, in essence, dependent on the electrode materials employed in such systems. The emphasis of research on electrochemical systems is given to developing electrode materials that would offer cost-effectiveness, stability, and reliable results that can be practical for commercial scaling. However, the operation of these systems also relies on other various components that include electrode fabrication, electrolytes, system architecture, the durability of the systems, and supporting components (i.e., substrate/current collector). On the choice of the current collector, nickel foam (NF) has enjoyed widespread attention as a favourable substrate in various electrochemical systems. This growing trend is attributed to its unique interlinked three-dimensional structure that offers advantages such as light weight, high porosity, great mechanical strength, chemical stability, and promising electrical and thermal conductivity. These traits are favourable for maximized contact areas between the current collector, the active materials, and charged species, resulting in the reduction of charge transport pathways, which is a vital step for improving the electrochemical performance. This review aims at highlighting the use of NF as a substrate of choice in developing effective electrodes for various electrochemical systems and can serve as a navigational tool for the literature involving the use of NF as the current collector. It also shows, to a certain extent, the impact of NF on electrochemical performance as compared with other current collectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright 2019, Springer Nature.

Fig. 2
Fig. 3

Copyright 2013, Royal Society of Chemistry.

Fig. 4

Copyright 2019, Elsevier.

Fig. 5

Copyright 2017, American Chemical Society.

Fig. 6

Copyright 2013, The Royal Society of Chemistry.

Fig. 7

Copyright 2020, Elsevier.

Similar content being viewed by others

References

  1. N.A. Salleh, S. Kheawhom, and A.A. Mohamad, Characterizations of nickel mesh and nickel foam current collectors for supercapacitor application. Arab. J. Chem. 13(8), 6838 (2020). https://doi.org/10.1016/j.arabjc.2020.06.036.

    Article  CAS  Google Scholar 

  2. K. Makgopa, A. Bello, K. Raju, K.D. Modibane, and M.J. Hato, Nanostructured metal oxides for supercapacitor applications, Emerging Nanostructured Materials for Energy and Environmental Science. ed. S. Rajendran, M. Naushad, K. Raju, and R. Boukherroub (Springer, 2019), pp. 247–303.

    Chapter  Google Scholar 

  3. B. Pant, G.P. Ojha, and M. Park, One-pot synthesis, characterization, and electrochemical studies of tin-nickel sulfide hybrid structures on nickel foam for supercapacitor applications. J. Energy Storage 32, 101954 (2020). https://doi.org/10.1016/j.est.2020.101954.

    Article  Google Scholar 

  4. A.H. Alami, M.A. Abdelkareem, M. Faraj, K. Aokal, and N. Al Safarini, Titanium dioxide-coated nickel foam photoelectrodes for direct urea fuel cell applications. Energy 208, 118253 (2020). https://doi.org/10.1016/j.energy.2020.118253.

    Article  CAS  Google Scholar 

  5. L.P. Lefebvre, J. Banhart, and D.C. Dunand, Porous metals and metallic foams: current status and recent developments. Adv. Eng. Mater. 10(9), 775 (2008). https://doi.org/10.1002/adem.200800241.

    Article  CAS  Google Scholar 

  6. Nanoshel. Nickel foam industrial application (2021), https://www.nanoshel.com/nickel-foam-industrial-application. Accessed 4 Aug 2021

  7. C. Guan, J. Liu, C. Cheng, H. Li, X. Li, W. Zhou, H. Zhang, and H.J. Fan, Hybrid structure of cobalt monoxide nanowire @ nickel hydroxidenitrate nanoflake aligned on nickel foam for high-rate supercapacitor. Energy Environ. Sci. 4(11), 4496 (2011). https://doi.org/10.1039/c1ee01685g.

    Article  CAS  Google Scholar 

  8. D. Yu, Z. Li, G. Zhao, H. Zhang, H. Aslan, J. Li, F. Sun, L. Zhu, B. Du, B. Yang, W. Cao, Y. Sun, F. Besenbacher, and M. Yu, Porous ultrathin NiSe nanosheet networks on nickel foam for high-performance hybrid supercapacitors. ChemSusChem 13(1), 260 (2020). https://doi.org/10.1002/cssc.201901766.

    Article  CAS  Google Scholar 

  9. M. Yu, W. Wang, C. Li, T. Zhai, X. Lu, and Y. Tong, Scalable self-growth of Ni@NiO core-shell electrode with ultrahigh capacitance and super-long cyclic stability for supercapacitors. NPG Asia Mater. 6(9), e129 (2014). https://doi.org/10.1038/am.2014.78.

    Article  CAS  Google Scholar 

  10. K. Makgopa, P.M. Ejikeme, C.J. Jafta, K. Raju, M. Zeiger, V. Presser, and K.I. Ozoemena, A high-rate aqueous symmetric pseudocapacitor based on highly graphitized onion-like carbon/birnessite-type manganese oxide nanohybrids. J. Mater. Chem. A 3(7), 3480 (2015). https://doi.org/10.1039/c4ta06715k.

    Article  CAS  Google Scholar 

  11. W. Xing, S. Qiao, X. Wu, X. Gao, J. Zhou, S. Zhuo, S.B. Hartono, and D. Hulicova-Jurcakova, Exaggerated capacitance using electrochemically active nickel foam as current collector in electrochemical measurement. J. Power Sources 196(8), 4123 (2011). https://doi.org/10.1016/j.jpowsour.2010.12.003.

    Article  CAS  Google Scholar 

  12. J.T. Ren and Z.Y. Yuan, Hierarchical nickel sulfide nanosheets directly grown on Ni foam: a stable and efficient electrocatalyst for water reduction and oxidation in alkaline medium. ACS Sustain. Chem. Eng. 5(8), 7203 (2017). https://doi.org/10.1021/acssuschemeng.7b01419.

    Article  CAS  Google Scholar 

  13. K. Yao, M. Zhai, and Y. Ni, α-Ni(OH)2·0.75H2O nanofilms on Ni foam from simple NiCl2 solution: fast electrodeposition, formation mechanism and application as an efficient bifunctional electrocatalyst for overall water splitting in alkaline solution. Electrochim. Acta 301, 87 (2019). https://doi.org/10.1016/j.electacta.2019.01.152.

    Article  CAS  Google Scholar 

  14. X.G. Yang, D.L. Duan, X. Zhang, S.L. Jiang, S. Li, and H.C. Zhang, Impact behavior of polyetheretherketone/nickel foam co-continuous composites. J. Mater. Eng. Perform. 28(10), 6380 (2019). https://doi.org/10.1007/s11665-019-04360-0.

    Article  CAS  Google Scholar 

  15. H. Geaney, D. McNulty, J. O’Connell, J.D. Holmes, and C. O’Dwyer, Assessing charge contribution from thermally treated Ni foam as current collectors for Li-ion batteries. J. Electrochem. Soc. 163(8), A1805 (2016). https://doi.org/10.1149/2.0071609jes.

    Article  CAS  Google Scholar 

  16. A.H. Alami, K. Aokal, and M. Faraj, Investigating nickel foam as photoanode substrate for potential dye-sensitized solar cells applications. Energy 211, 118689 (2020). https://doi.org/10.1016/j.energy.2020.118689.

    Article  CAS  Google Scholar 

  17. P.A. Shinde, Y. Seo, S. Lee, H. Kim, Q.N. Pham, Y. Won, and S. Chan Jun, Layered manganese metal-organic framework with high specific and areal capacitance for hybrid supercapacitors. Chem. Eng. J. 387, 122982 (2020). https://doi.org/10.1016/j.cej.2019.122982.

    Article  CAS  Google Scholar 

  18. Y. Jiang, Y. Lu, J. Lin, X. Wang, and Z. Shen, A hierarchical MoP nanoflake array supported on Ni foam: a bifunctional electrocatalyst for overall water splitting. Small Methods 2(5), 1700369 (2018). https://doi.org/10.1002/smtd.201700369.

    Article  CAS  Google Scholar 

  19. K.O. Oyedotun, D.Y. Momodu, M. Naguib, A.A. Mirghni, T.M. Masikhwa, A.A. Khaleed, M. Kebede, and N. Manyala, Electrochemical performance of two-dimensional Ti3C2-Mn3O4 nanocomposites and carbonized iron cations for hybrid supercapacitor electrodes. Electrochim. Acta 301, 487–499 (2019). https://doi.org/10.1016/j.electacta.2019.01.158.

    Article  CAS  Google Scholar 

  20. B.E. Conway, Electrochemical Supercapacitors (Boston, MA: Springer, 1999).

    Book  Google Scholar 

  21. P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, Nanoscience and Technology: A Collection of Reviews from Nature Journals. (UK: Macmillan Publishers, 2009), pp. 320–329.

    Chapter  Google Scholar 

  22. J.R. Miller, Valuing reversible energy storage. Science. 335(6074), 1312 (2012). https://doi.org/10.1126/science.1219134.

    Article  CAS  Google Scholar 

  23. E. Frackowiak and F. Béguin, Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39(6), 937–950 (2001). https://doi.org/10.1016/S0008-6223(00)00183-4.

    Article  CAS  Google Scholar 

  24. K. Yuan, Y. Xu, J. Uihlein, G. Brunklaus, L. Shi, R. Heiderhoff, M. Que, M. Forster, T. Chassé, T. Pichler, T. Riedl, Y. Chen, and U. Scherf, Straightforward generation of pillared, microporous graphene frameworks for use in supercapacitors. Adv. Mater. 27(42), 6714–6721 (2015). https://doi.org/10.1002/adma.201503390.

    Article  CAS  Google Scholar 

  25. N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai, Y. Jung, and J. Thomas, Asymmetric supercapacitor electrodes and devices. Adv. Mater. 29(21), 1605336 (2017). https://doi.org/10.1002/adma.201605336.

    Article  CAS  Google Scholar 

  26. C. Largeot, C. Portet, J. Chmiola, P.L. Taberna, Y. Gogotsi, and P. Simon, Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 130(9), 2730 (2008). https://doi.org/10.1021/ja7106178.

    Article  CAS  Google Scholar 

  27. D.M. Teffu, M.D. Makhafola, M.M. Ndipingwi, E. Makhado, M.J. Hato, E.I. Iwuoha, K.D. Modibane, and K. Makgopa, Interrogation of electrochemical performance of reduced graphene oxide/metal-organic framework hybrid for asymmetric supercabattery application. Electroanalysis 32(12), 2827 (2020). https://doi.org/10.1002/elan.202060303.

    Article  CAS  Google Scholar 

  28. K. Makgopa, L.F. Mabena, C.G. Brink, G.N. Chauke, M.D. Teffu, K.D. Modibane, and M.J. Hato, Nanostructured carbon-based electrode materials for supercapacitor applications, Carbon Related Materials. ed. S. Kaneko, M. Aono, A. Pruna, M. Can, P. Mele, M. Ertugrul, and T. Endo (Cham: Springer, 2021), pp. 317–355.

    Chapter  Google Scholar 

  29. K. Makgopa, M.S. Ratsoma, K. Raju, L.F. Mabena, and K.D. Modibane, One-step hydrothermal synthesis of nitrogen-doped reduced graphene oxide/hausmannite manganese oxide for symmetric and asymmetric pseudocapacitors. ACS Omega 6(47), 31421 (2021). https://doi.org/10.1021/acsomega.1c02302.

    Article  CAS  Google Scholar 

  30. Q. Zhang, C. Xu, and B. Lu, Super-long life supercapacitors based on the construction of Ni foam/graphene/Co3S4 composite film hybrid electrodes. Electrochim. Acta 132, 180 (2014). https://doi.org/10.1016/j.electacta.2014.03.111.

    Article  CAS  Google Scholar 

  31. S. Jiang, J. Wu, B. Ye, Y. Fan, J. Ge, Q. Guo, and M. Huang, Growth of Ni3Se2 nanosheets on Ni foam for asymmetric supercapacitors. J. Mater. Sci. Mater. Electron. 29(6), 4649–4657 (2018). https://doi.org/10.1007/s10854-017-8416-y.

    Article  CAS  Google Scholar 

  32. F. Zhang, C. Yuan, X. Lu, L. Zhang, Q. Che, and X. Zhang, Facile growth of mesoporous Co3O4 nanowire arrays on Ni foam for high performance electrochemical capacitors. J. Power Sources 203, 250–256 (2012). https://doi.org/10.1016/j.jpowsour.2011.12.001.

    Article  CAS  Google Scholar 

  33. C. Yuan, J. Li, L. Hou, X. Zhang, L. Shen, and X.W. Lou, Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv. Funct. Mater. 22(21), 4592–4597 (2012). https://doi.org/10.1002/adfm.201200994.

    Article  CAS  Google Scholar 

  34. S. Ye, J. Feng, and P. Wu, Deposition of three-dimensional graphene aerogel on nickel foam as a binder-free supercapacitor electrode. ACS Appl. Mater. Interfaces 5(15), 7122–7129 (2013). https://doi.org/10.1021/am401458x.

    Article  CAS  Google Scholar 

  35. J. Yang, E. Zhang, X. Li, Y. Yu, J. Qu, and Z.Z. Yu, Direct reduction of graphene oxide by Ni foam as a high-capacitance supercapacitor electrode. ACS Appl. Mater. Interfaces 8(3), 2297–2305 (2016). https://doi.org/10.1021/acsami.5b11337.

    Article  CAS  Google Scholar 

  36. K. Raju, H. Han, D.B. Velusamy, Q. Jiang, H. Yang, F.P. Nkosi, N. Palaniyandy, K. Makgopa, Z. Bo, and K.I. Ozoemena, Rational design of 2D manganese phosphate hydrate nanosheets as pseudocapacitive electrodes. ACS Energy Lett. 5(1), 23–30 (2020). https://doi.org/10.1021/acsenergylett.9b02299.

    Article  CAS  Google Scholar 

  37. B.A. Mahmoud, A.A. Mirghni, K.O. Oyedotun, O. Fasakin, and N. Manyala, Nanoplatelets ammonium nickel-cobalt phosphate graphene foam composite as novel electrode material for hybrid supercapacitors. J. Alloys Compd. 883, 160897 (2021). https://doi.org/10.1016/j.jallcom.2021.160897.

    Article  CAS  Google Scholar 

  38. D.M. Teffu, M.E. Ramoroka, M.D. Makhafola, K. Makgopa, T.C. Maponya, O.A. Seerane, M.J. Hato, E.I. Iwuoha, and K.D. Modibane, High-performance supercabattery based on reduced graphene oxide/metal organic framework nanocomposite decorated with palladium nanoparticles. Electrochim. Acta 412, 140136 (2022). https://doi.org/10.1016/j.electacta.2022.140136.

    Article  CAS  Google Scholar 

  39. L. Yu, G. Zhang, C. Yuan, and X.W. Lou, Hierarchical NiCo2O4@MnO2 core-shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chem. Commun. 49(2), 137 (2013). https://doi.org/10.1039/c2cc37117k.

    Article  CAS  Google Scholar 

  40. D. Guo, P. Zhang, H. Zhang, X. Yu, J. Zhu, Q. Li, and T. Wang, NiMoO4 nanowires supported on Ni foam as novel advanced electrodes for supercapacitors. J. Mater. Chem. A 1(32), 9024 (2013). https://doi.org/10.1039/c3ta11487b.

    Article  CAS  Google Scholar 

  41. B. Wang, Q. Liu, Z. Qian, X. Zhang, J. Wang, Z. Li, H. Yan, Z. Gao, F. Zhao, and L. Liu, Two steps in situ structure fabrication of Ni-Al layered double hydroxide on Ni foam and its electrochemical performance for supercapacitors. J. Power Sources 246, 747 (2014). https://doi.org/10.1016/j.jpowsour.2013.08.035.

    Article  CAS  Google Scholar 

  42. H. Chen, J. Jiang, L. Zhang, D. Xia, Y. Zhao, D. Guo, T. Qi, and H. Wan, In situ growth of NiCo2S4 nanotube arrays on Ni foam for supercapacitors: maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance. J. Power Sources 254, 249 (2014). https://doi.org/10.1016/j.jpowsour.2013.12.092.

    Article  CAS  Google Scholar 

  43. K.J. Huang, J.Z. Zhang, and J.L. Cai, Preparation of porous layered molybdenum selenide-graphene composites on Ni foam for high-performance supercapacitor and electrochemical sensing. Electrochim. Acta 180, 770 (2015). https://doi.org/10.1016/j.electacta.2015.09.016.

    Article  CAS  Google Scholar 

  44. M. Kuang, X.Y. Liu, F. Dong, and Y.X. Zhang, Tunable design of layered CuCo2O4 nanosheets@MnO2 nanoflakes core-shell arrays on Ni foam for high-performance supercapacitors. J. Mater. Chem. A 3(43), 21528 (2015). https://doi.org/10.1039/c5ta05957g.

    Article  CAS  Google Scholar 

  45. X. Xu, H. Zhao, J.K. Zhou, R. Xue, and J. Gao, NiCoO2 flowers grown on the aligned-flakes coated Ni foam for application in hybrid energy storage. J. Power Sources 329, 238 (2016). https://doi.org/10.1016/j.jpowsour.2016.08.080.

    Article  CAS  Google Scholar 

  46. X. Wang, J. Hao, Y. Su, F. Liu, J. An, and J. Lian, A Ni1-XZnxS/Ni foam composite electrode with multi-layers: one-step synthesis and high supercapacitor performance. J. Mater. Chem. A 4(33), 12929 (2016). https://doi.org/10.1039/c6ta04022e.

    Article  CAS  Google Scholar 

  47. K.I. Ozoemena, K. Raju, P.M. Ejikeme, and K.I. Ozoemena, High-performance Mn3O4/onion-like carbon (OLC) nanohybrid pseudocapacitor: unravelling the intrinsic properties of OLC against other carbon supports. Carbon 117, 20 (2017). https://doi.org/10.1016/j.carbon.2017.02.050.

    Article  CAS  Google Scholar 

  48. C. Lamiel, V.H. Nguyen, D.R. Kumar, and J.J. Shim, Microwave-assisted binder-free synthesis of 3D Ni-Co-Mn oxide nanoflakes@Ni foam electrode for supercapacitor applications. Chem. Eng. J. 316, 1091 (2017). https://doi.org/10.1016/j.cej.2017.02.004.

    Article  CAS  Google Scholar 

  49. S. Kong, F. Yang, K. Cheng, T. Ouyang, K. Ye, G. Wang, and D. Cao, In-situ growth of cobalt oxide nanoflakes from cobalt nanosheet on nickel foam for battery-type supercapacitors with high specific capacity. J. Electroanal. Chem. 785, 103–108 (2017). https://doi.org/10.1016/j.jelechem.2016.12.002.

    Article  CAS  Google Scholar 

  50. Y. Wang, D. Yang, T. Zhou, J. Pan, T. Wei, and Y. Sun, Oriented CuCo2S4 nanograss arrays/Ni foam as an electrode for a high-performance all-solid-state supercapacitor. Nanotechnology 28(46), 465402 (2017). https://doi.org/10.1088/1361-6528/aa8d85.

    Article  CAS  Google Scholar 

  51. E. Kamali-Heidari, Z.L. Xu, M.H. Sohi, A. Ataie, and J.K. Kim, Core-shell structured Ni3S2 nanorods grown on interconnected Ni-graphene foam for symmetric supercapacitors. Electrochim. Acta 271, 507 (2018). https://doi.org/10.1016/j.electacta.2018.03.183.

    Article  CAS  Google Scholar 

  52. A. Ali, M. Ammar, M. Ali, Z. Yahya, M.Y. Javaid, S.U. Hassan, and T. Ahmed, Mo-doped ZnO nanoflakes on Ni-foam for asymmetric supercapacitor applications. RSC Adv. 9(47), 27432 (2019). https://doi.org/10.1039/c9ra05051e.

    Article  CAS  Google Scholar 

  53. X. Shi, H. Wang, S. Ji, V. Linkov, F. Liu, and R. Wang, CoNiSe2 nanorods directly grown on Ni foam as advanced cathodes for asymmetric supercapacitors. Chem. Eng. J. 2019(364), 320 (2018). https://doi.org/10.1016/j.cej.2019.01.156.

    Article  CAS  Google Scholar 

  54. Z. Zhao, T. Shen, Z. Liu, Q. Zhong, and Y. Qin, Facile fabrication of binder-free reduced graphene oxide/MnO2/Ni foam hybrid electrode for high-performance supercapacitors. J. Alloys Compd. 812, 152124 (2020). https://doi.org/10.1016/j.jallcom.2019.152124.

    Article  CAS  Google Scholar 

  55. R. Wang, H. Xuan, G. Zhang, H. Li, Y. Guan, X. Liang, S. Zhang, Z. Wu, P. Han, and Y. Wu, Design and fabrication of free-standing Ni3S2/NiV-LDH nanosheets arrays on reduced graphene oxide/Ni foam as a novel electrode for asymmetric supercapacitor. Appl. Surf. Sci. 526, 146641 (2020). https://doi.org/10.1016/j.apsusc.2020.146641.

    Article  CAS  Google Scholar 

  56. Y. Meng, D. Yu, Y. Teng, X. Liu, and X. Liu, A high-performance electrode based on the ZnCo2O4@CoMoO4 core-shell nanosheet arrays on nickel foam and their application in battery-supercapacitor hybrid device. Electrochim. Acta 347, 136278 (2020). https://doi.org/10.1016/j.electacta.2020.136278.

    Article  CAS  Google Scholar 

  57. C.V.V.M. Gopi, S. Sambasivam, K.V.G. Raghavendra, R. Vinodh, I.M. Obaidat, and H.J. Kim, Facile synthesis of hierarchical flower-like NiMoO4-CoMoO4 nanosheet arrays on nickel foam as an efficient electrode for high rate hybrid supercapacitors. J. Energy Storage 30(March), 101550 (2020). https://doi.org/10.1016/j.est.2020.101550.

    Article  Google Scholar 

  58. L. Zhao, S. Lei, Q. Tu, L. Rao, W. Zen, Y. Xiao, and B. Cheng, Phase-controlled growth of nickel hydroxide nanostructures on nickel foam for enhanced supercapacitor performance. J. Energy Storage 43(September), 103171 (2021). https://doi.org/10.1016/j.est.2021.103171.

    Article  Google Scholar 

  59. R. Li, W. Zhang, M. Zhang, Z. Peng, Y. Wang, Y. Liu, Y. Zheng, X. Guo, Y. Zhang, Z. Wang, and T. Zhang, High Performance Ni3S2/3D graphene/nickel foam composite electrode for supercapacitor applications. Mater. Chem. Phys. 2021(257), 123769 (2020). https://doi.org/10.1016/j.matchemphys.2020.123769.

    Article  CAS  Google Scholar 

  60. Z. Liu, Y. Liu, Y. Zhong, L. Cui, W. Yang, J.M. Razal, C.J. Barrow, and J. Liu, Facile construction of MgCo2O4@CoFe layered double hydroxide core-shell nanocomposites on nickel foam for high-performance asymmetric supercapacitors. J. Power Sources 2021(484), 229288 (2020). https://doi.org/10.1016/j.jpowsour.2020.229288.

    Article  CAS  Google Scholar 

  61. J. Liu, E. Han, Y. He, X. Tong, and S. Guo, Effect of soft template on nickel-cobalt layered double hydroxides grown on nickel foam as battery-type electrodes for hybrid supercapacitors. Ionics (Kiel) 27(7), 3129–3141 (2021). https://doi.org/10.1007/s11581-021-04050-9.

    Article  CAS  Google Scholar 

  62. C. Zhang, T. Kuila, N.H. Kim, S.H. Lee, and J.H. Lee, Facile preparation of flower-like NiCo2O4/three dimensional graphene foam hybrid for high performance supercapacitor electrodes. Carbon 89, 328–339 (2015). https://doi.org/10.1016/j.carbon.2015.03.051.

    Article  CAS  Google Scholar 

  63. C. Guan, X. Liu, W. Ren, X. Li, C. Cheng, and J. Wang, Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis. Adv. Energy Mater. 7(12), 1–8 (2017). https://doi.org/10.1002/aenm.201602391.

    Article  CAS  Google Scholar 

  64. M. Chatterjee, A. Kundu, S. Das, and S.K. Pradhan, Ultrastable asymmetric supercapacitor device with chemically derived and mechanically activated NiCo2O4. Energy Fuels 36(14), 7878–7889 (2022). https://doi.org/10.1021/acs.energyfuels.2c01321.

    Article  CAS  Google Scholar 

  65. R.J. Deokate, R.S. Kalubarme, C.J. Park, and C.D. Lokhande, Simple synthesis of NiCo2O4 thin films using spray pyrolysis for electrochemical supercapacitor application: a novel approach. Electrochim. Acta 224, 378–385 (2017). https://doi.org/10.1016/j.electacta.2016.12.034.

    Article  CAS  Google Scholar 

  66. J.S. Gao, Z. Liu, Y. Lin, Y. Tang, T. Lian, and Y. He, NiCo2O4 nanofeathers derived from prussian blue analogues with enhanced electrochemical performance for supercapacitor. Chem. Eng. J. 2020(388), 124368 (2019). https://doi.org/10.1016/j.cej.2020.124368.

    Article  CAS  Google Scholar 

  67. N. Wang, B. Sun, P. Zhao, M. Yao, W. Hu, and S. Komarneni, Electrodeposition preparation of NiCo2O4 mesoporous film on ultrafine nickel wire for flexible asymmetric supercapacitors. Chem. Eng. J. 345(January), 31 (2018). https://doi.org/10.1016/j.cej.2018.03.147.

    Article  CAS  Google Scholar 

  68. B. Mordina, N.S. Neeraj, A.K. Srivastava, K. Mukhopadhyay, and N.E. Prasad, Investigation of the structure-property relationship in binder free asymmetric supercapacitor device based on NiCo2O4·NH2O nanostructures. J. Electroanal. Chem. 880, 114850 (2021). https://doi.org/10.1016/j.jelechem.2020.114850.

    Article  CAS  Google Scholar 

  69. H. Zhang, D. Xiao, Q. Li, Y. Ma, S. Yuan, L. Xie, C. Chen, and C. Lu, Porous NiCo2O4 nanowires supported on carbon cloth for flexible asymmetric supercapacitor with high energy density. J. Energy Chem. 27(1), 195 (2018). https://doi.org/10.1016/j.jechem.2017.10.034.

    Article  Google Scholar 

  70. T. Wang, Y. Guo, B. Zhao, S. Yu, H.P. Yang, D. Lu, X.Z. Fu, R. Sun, and C.P. Wong, NiCo2O4 nanosheets in-situ grown on three dimensional porous Ni film current collectors as integrated electrodes for high-performance supercapacitors. J. Power Sources 286, 371 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.180.

    Article  CAS  Google Scholar 

  71. G. Zhang and X.W. Lou, General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. Adv. Mater. 25(7), 976 (2013). https://doi.org/10.1002/adma.201204128.

    Article  CAS  Google Scholar 

  72. M. Winter and R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104(10), 4245 (2004). https://doi.org/10.1021/cr020730k.

    Article  CAS  Google Scholar 

  73. F. Cheng, J. Liang, Z. Tao, and J. Chen, Functional materials for rechargeable batteries. Adv. Mater. 23(15), 1695 (2011). https://doi.org/10.1002/adma.201003587.

    Article  CAS  Google Scholar 

  74. Q. Sa and Y. Wang, Ni foam as the current collector for high capacity C-Si composite electrode. J. Power Sources 208, 46 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.020.

    Article  CAS  Google Scholar 

  75. N. Feng, D. Hu, P. Wang, X. Sun, X. Li, and D. He, Growth of nanostructured nickel sulfide films on Ni foam as high-performance cathodes for lithium ion batteries. Phys. Chem. Chem. Phys. 15(24), 9924 (2013). https://doi.org/10.1039/c3cp50615k.

    Article  CAS  Google Scholar 

  76. W. Yang, G. Cheng, C. Dong, Q. Bai, X. Chen, Z. Peng, and Z. Zhang, NiO nanorod array anchored Ni foam as a binder-free anode for high-rate lithium ion batteries. J. Mater. Chem. A 2(47), 20022 (2014). https://doi.org/10.1039/c4ta04809a.

    Article  CAS  Google Scholar 

  77. Q. Zhao, X. Hu, K. Zhang, N. Zhang, Y. Hu, and J. Chen, Sulfur nanodots electrodeposited on Ni foam as high-performance cathode for Li-S batteries. Nano Lett. 15(1), 721 (2015). https://doi.org/10.1021/nl504263m.

    Article  CAS  Google Scholar 

  78. K. Zhang, F. Qin, J. Fang, Q. Li, M. Jia, Y. Lai, Z. Zhang, and J. Li, Nickel foam as interlayer to improve the performance of lithium-sulfur battery. J. Solid State Electrochem. 18(4), 1025 (2014). https://doi.org/10.1007/s10008-013-2351-5.

    Article  CAS  Google Scholar 

  79. L. Wang, C. Wang, F. Li, F. Cheng, and J. Chen, In situ synthesis of Bi nanoflakes on Ni foam for sodium-ion batteries. Chem. Commun. 54(1), 38 (2017). https://doi.org/10.1039/c7cc08341f.

    Article  CAS  Google Scholar 

  80. P. Hu, T. Wang, J. Zhao, C. Zhang, J. Ma, H. Du, X. Wang, and G. Cui, Ultrafast alkaline Ni/Zn battery based on Ni-foam-supported Ni3S2 nanosheets. ACS Appl. Mater. Interfaces 7(48), 26396 (2015). https://doi.org/10.1021/acsami.5b09728.

    Article  CAS  Google Scholar 

  81. Q. Chen, J. Li, C. Liao, G. Hu, Y. Fu, O.K. Asare, S. Shi, Z. Liu, L. Zhou, and L. Mai, Ni foam supported NiO nanosheets as high-performance free-standing electrodes for hybrid supercapacitors and Ni-Zn batteries. J. Mater. Chem. A 6(40), 19488 (2018). https://doi.org/10.1039/c8ta07574c.

    Article  CAS  Google Scholar 

  82. H. Wang, H. Yu, S. Yin, Y. Xu, X. Li, H. Xue, and L. Wang, Integrated mesoporous PtPd film/Ni foam: an efficient binder-free cathode for Zn-air batteries. ACS Sustain. Chem. Eng. 6(9), 12367 (2018). https://doi.org/10.1021/acssuschemeng.8b02834.

    Article  CAS  Google Scholar 

  83. S. Ni, T. Li, X. Lv, X. Yang, and L. Zhang, Designed constitution of NiO/Ni nanostructured electrode for high performance lithium ion battery. Electrochim. Acta 91, 267 (2013). https://doi.org/10.1016/j.electacta.2012.12.113.

    Article  CAS  Google Scholar 

  84. J. Wang, Q. Zhang, X. Li, D. Xu, Z. Wang, H. Guo, and K. Zhang, Three-dimensional hierarchical Co3O4/CuO nanowire heterostructure arrays on nickel foam for high-performance lithium ion batteries. Nano Energy 6, 19–26 (2014). https://doi.org/10.1016/j.nanoen.2014.02.012.

    Article  CAS  Google Scholar 

  85. L. Xiong, Y. Teng, Y. Wu, J. Wang, and Z. He, Large-scale synthesis of aligned Co3O4 nanowalls on nickel foam and their electrochemical performance for Li-ion batteries. Ceram. Int. 40(10), 15561–15568 (2014). https://doi.org/10.1016/j.ceramint.2014.07.032.

    Article  CAS  Google Scholar 

  86. J. Chang, X. Huang, G. Zhou, S. Cui, S. Mao, and J. Chen, Three-dimensional carbon-coated Si/RGO nanostructures anchored by nickel foam with carbon nanotubes for Li-ion battery applications. Nano Energy 15, 679 (2015). https://doi.org/10.1016/j.nanoen.2015.05.020.

    Article  CAS  Google Scholar 

  87. M. Tokur, H. Algul, M. Uysal, T. Cetinkaya, A. Alp, and H. Akbulut, Electrolytic coating of Sn nano-rods on nickel foam support for high performance lithium ion battery anodes. Surf. Coat. Technol. 288, 62 (2016). https://doi.org/10.1016/j.surfcoat.2016.01.015.

    Article  CAS  Google Scholar 

  88. S. Li, W. Xie, L. Gu, Z. Liu, X. Hou, B. Liu, Q. Wang, and D. He, Facilely Scraping Si nanoparticles@reduced graphene oxide sheets onto nickel foam as binder-free electrodes for lithium ion batteries. Electrochim. Acta 193, 246 (2016). https://doi.org/10.1016/j.electacta.2016.02.074.

    Article  CAS  Google Scholar 

  89. A. Mukanova, A. Nurpeissova, A. Urazbayev, S.S. Kim, M. Myronov, and Z. Bakenov, Silicon thin film on graphene coated nickel foam as an anode for Li-ion batteries. Electrochim. Acta 258, 800 (2017). https://doi.org/10.1016/j.electacta.2017.11.129.

    Article  CAS  Google Scholar 

  90. J.T. Ren, G.G. Yuan, C.C. Weng, and Z.Y. Yuan, Rationally designed Co3O4-C nanowire arrays on Ni foam derived from metal organic framework as reversible oxygen evolution electrodes with enhanced performance for Zn-air batteries. ACS Sustain. Chem. Eng. 6(1), 707–718 (2018). https://doi.org/10.1021/acssuschemeng.7b03034.

    Article  CAS  Google Scholar 

  91. K. Xu, A. Loh, B. Wang, and X. Li, Enhancement of oxygen transfer by design nickel foam electrode for zinc-air battery. J. Electrochem. Soc. 165(5), A809–A818 (2018). https://doi.org/10.1149/2.0361805jes.

    Article  CAS  Google Scholar 

  92. H. Zhao, D. Li, H. Li, A.G. Tamirat, X. Song, Z. Zhang, Y. Wang, Z. Guo, L. Wang, and S. Feng, Ru nanosheet catalyst supported by three-dimensional nickel foam as a binder-free cathode for Li-CO2 batteries. Electrochim. Acta 299, 592 (2019). https://doi.org/10.1016/j.electacta.2019.01.027.

    Article  CAS  Google Scholar 

  93. Z. Chen, Q. Zhang, L. Lu, X. Chen, S. Wang, C. Xin, B. Xing, and C. Zhang, Enhanced cycle stability of Na2Ti3O7 nanosheets grown in situ on nickel foam as an anode for sodium-ion batteries. Energy Fuels 34(3), 3901 (2020). https://doi.org/10.1021/acs.energyfuels.9b04307.

    Article  CAS  Google Scholar 

  94. Y. Huang, M. Li, S. Chen, P. Sun, X. Lv, B. Li, L. Fang, and X. Sun, Constructing aqueous Zn//Ni hybrid battery with NiSe nanorod array on nickel foam and redox electrolytes for high-performance electrochemical energy storage. Appl. Surf. Sci. 562(May), 150222 (2021). https://doi.org/10.1016/j.apsusc.2021.150222.

    Article  CAS  Google Scholar 

  95. D. Chen, L. Pan, P. Pei, S. Huang, P. Ren, and X. Song, Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries. Energy 224, 120142 (2021). https://doi.org/10.1016/j.energy.2021.120142.

    Article  CAS  Google Scholar 

  96. Y. Kang, S. Wang, S. Zhu, H. Gao, K.S. Hui, C.Z. Yuan, H. Yin, F. Bin, X.L. Wu, W. Mai, L. Zhu, M. Hu, F. Liang, F. Chen, and K.N. Hui, Iron-modulated nickel cobalt phosphide embedded in carbon to boost power density of hybrid sodium-air battery. Appl. Catal. B Environ. 2021(285), 119786 (2020). https://doi.org/10.1016/j.apcatb.2020.119786.

    Article  CAS  Google Scholar 

  97. S. Pakseresht, T. Cetinkaya, A.W.M. Al-Ogaili, M. Halebi, and H. Akbulut, Biologically synthesized TiO2 nanoparticles and their application as lithium-air battery cathodes. Ceram. Int. 47(3), 3994 (2021). https://doi.org/10.1016/j.ceramint.2020.09.264.

    Article  CAS  Google Scholar 

  98. G. Cho, J. Kim, S. Lee, G. Kim, J. Noh, K. Cho, K. Kim, T. Nam, and H. Ahn, Facile fabrication of patterned Si film electrodes containing trench-structured Cu current collectors for thin-film batteries. Electrochim. Acta 224, 649 (2017). https://doi.org/10.1016/j.electacta.2016.12.067.

    Article  CAS  Google Scholar 

  99. D.H. Nam, R.H. Kim, D.W. Han, and H.S. Kwon, Electrochemical performances of Sn anode electrodeposited on porous Cu foam for Li-ion batteries. Electrochim. Acta 66, 126 (2012). https://doi.org/10.1016/j.electacta.2012.01.084.

    Article  CAS  Google Scholar 

  100. S.-J. Kim, M.-C. Kim, S.-B. Han, G.-H. Lee, H.-S. Choe, S.-H. Moon, D.-H. Kwak, S. Hong, and K.-W. Park, 3-D Si/carbon nanofiber as a binder/current collector-free anode for lithium-ion batteries. J. Ind. Eng. Chem. 49, 105–111 (2017). https://doi.org/10.1016/j.jiec.2017.01.014.

    Article  CAS  Google Scholar 

  101. X. Wang, L. Sun, X. Hu, R.A. Susantyoko, and Q. Zhang, Ni-Si nanosheet network as high performance anode for Li ion batteries. J. Power Sources 280, 393 (2015). https://doi.org/10.1016/j.jpowsour.2015.01.123.

    Article  CAS  Google Scholar 

  102. S. Jing, H. Jiang, Y. Hu, and C. Li, Directly grown Si nanowire arrays on Cu foam with a coral-like surface for lithium-ion batteries. Nanoscale 6(23), 14441 (2014). https://doi.org/10.1039/c4nr05469e.

    Article  CAS  Google Scholar 

  103. J. Liu, Q. Zhang, T. Zhang, J.T. Li, L. Huang, and S.G. Sun, A robust ion-conductive biopolymer as a binder for Si anodes of lithium-ion batteries. Adv. Funct. Mater. 25(23), 3599 (2015). https://doi.org/10.1002/adfm.201500589.

    Article  CAS  Google Scholar 

  104. Y. An, H. Fei, G. Zeng, L. Ci, S. Xiong, J. Feng, and Y. Qian, Green, scalable, and controllable fabrication of nanoporous silicon from commercial alloy precursors for high-energy lithium-ion batteries. ACS Nano 12(5), 4993 (2018). https://doi.org/10.1021/acsnano.8b02219.

    Article  CAS  Google Scholar 

  105. Z. Li, Y. Zhang, T. Liu, X. Gao, S. Li, M. Ling, C. Liang, J. Zheng, and Z. Lin, Silicon anode with high initial coulombic efficiency by modulated trifunctional binder for high-areal-capacity lithium-ion batteries. Adv. Energy Mater. 10(20), 1 (2020). https://doi.org/10.1002/aenm.201903110.

    Article  CAS  Google Scholar 

  106. Y. Liu, K. Huang, Y. Fan, Q. Zhang, F. Sun, T. Gao, L. Yang, and J. Zhong, Three-dimensional network current collectors supported Si nanowires for lithium-ion battery applications. Electrochim. Acta 88, 766–771 (2013). https://doi.org/10.1016/j.electacta.2012.10.129.

    Article  CAS  Google Scholar 

  107. A. Mukanova, A. Nurpeissova, S.S. Kim, M. Myronov, and Z. Bakenov, N-type doped silicon thin film on a porous Cu current collector as the negative electrode for Li-ion batteries. ChemistryOpen 7(1), 92 (2018). https://doi.org/10.1002/open.201700162.

    Article  CAS  Google Scholar 

  108. T.Y. Ma, S. Dai, M. Jaroniec, and S.Z. Qiao, Synthesis of highly active and stable spinel-type oxygen evolution electrocatalysts by a rapid inorganic self-templating method. Chem. Eur. J. 20(39), 12669 (2014). https://doi.org/10.1002/chem.201403946.

    Article  CAS  Google Scholar 

  109. G.E. Evans and K.V. Kordesch, Hydrazine-air fuel cells. Science 158(3805), 1148 (1967). https://doi.org/10.1126/science.158.3805.1148.

    Article  CAS  Google Scholar 

  110. B.C.H. Steele and A. Heinzel, Materials for fuel-cell technologies. Nature 414(6861), 345 (2001). https://doi.org/10.1038/35104620.

    Article  CAS  Google Scholar 

  111. G. Rajeshkhanna and G. Ranga Rao, Micro and nano-architectures of Co3O4 on Ni foam for electro-oxidation of methanol. Int. J. Hydrogen Energy 43(9), 4706 (2018). https://doi.org/10.1016/j.ijhydene.2017.10.110.

    Article  CAS  Google Scholar 

  112. H. Wen, L.Y. Gan, H.B. Dai, X.P. Wen, L.S. Wu, H. Wu, and P. Wang, In situ grown Ni phosphide nanowire array on Ni foam as a high-performance catalyst for hydrazine electrooxidation. Appl. Catal. B Environ. 241, 292 (2019). https://doi.org/10.1016/j.apcatb.2018.09.043.

    Article  CAS  Google Scholar 

  113. K. Ye, H. Zhang, L. Zhao, X. Huang, K. Cheng, G. Wang, and D. Cao, Facile preparation of three-dimensional Ni(OH)2/Ni foam anode with low cost and its application in a direct urea fuel cell. New J. Chem. 40(10), 8673 (2016). https://doi.org/10.1039/c6nj01648k.

    Article  CAS  Google Scholar 

  114. G. Wang, K. Ye, J. Shao, Y. Zhang, K. Zhu, K. Cheng, J. Yan, G. Wang, and D. Cao, Porous Ni2P nanoflower supported on nickel foam as an efficient three-dimensional electrode for urea electro-oxidation in alkaline medium. Int. J. Hydrogen Energy 43(19), 9316–9325 (2018). https://doi.org/10.1016/j.ijhydene.2018.03.221.

    Article  CAS  Google Scholar 

  115. T. Lei, Y.M. Tian, G.L. Wang, J.L. Yin, Y.Y. Gao, Q. Wen, and D.X. Cao, An alkaline Al-H2O2 semi-fuel cell based on a nickel foam supported Co3O4 nanowire arrays cathode. Fuel Cells 11(3), 431–435 (2011). https://doi.org/10.1002/fuce.201000168.

    Article  CAS  Google Scholar 

  116. X. Liu, M. Hao, M. Feng, L. Zhang, Y. Zhao, X. Du, and G. Wang, A one-compartment direct glucose alkaline fuel cell with methyl viologen as electron mediator. Appl. Energy 106, 176 (2013). https://doi.org/10.1016/j.apenergy.2013.01.073.

    Article  CAS  Google Scholar 

  117. S. Cheng and J. Wu, Air-cathode preparation with activated carbon as catalyst, PTFE as binder and nickel foam as current collector for microbial fuel cells. Bioelectrochemistry 92, 22 (2013). https://doi.org/10.1016/j.bioelechem.2013.03.001.

    Article  CAS  Google Scholar 

  118. C.H.A. Tsang, K.N. Hui, K.S. Hui, and L. Ren, Deposition of Pd/graphene aerogel on nickel foam as a binder-free electrode for direct electro-oxidation of methanol and ethanol. J. Mater. Chem. A 2(42), 17986 (2014). https://doi.org/10.1039/c4ta03138e.

    Article  CAS  Google Scholar 

  119. C.H.A. Tsang and D.Y.C. Leung, Pd-Pt loaded graphene aerogel on nickel foam composite as binder-free anode for a direct glucose fuel cell unit. Solid State Sci. 71, 123 (2017). https://doi.org/10.1016/j.solidstatesciences.2017.07.014.

    Article  CAS  Google Scholar 

  120. C.H.A. Tsang and D.Y.C. Leung, Use of Pd-Pt loaded graphene aerogel on nickel foam in direct ethanol fuel cell. Solid State Sci. 75, 21 (2018). https://doi.org/10.1016/j.solidstatesciences.2017.11.005.

    Article  CAS  Google Scholar 

  121. M.A. Kamyabi, H. Mohammadian, S. Jadali, and M. Moharramnezhad, Hydrothermal syntheses of NiO-GO nanocomposite on 3D nickel foam as a support for Pt nanoparticles and its superior electrocatalytic activity towards methanol oxidation. Electroanalysis 31(8), 1501–1510 (2019). https://doi.org/10.1002/elan.201800793.

    Article  CAS  Google Scholar 

  122. L. Qian, S. Luo, L. Wu, X. Hu, W. Chen, and X. Wang, In situ growth of metal organic frameworks derived hierarchical hollow porous Co3O4/NiCo2O4 nanocomposites on nickel foam as self-supported flexible electrode for methanol electrocatalytic oxidation. Appl. Surf. Sci. 2020(503), 144306 (2019). https://doi.org/10.1016/j.apsusc.2019.144306.

    Article  CAS  Google Scholar 

  123. F. Wen, S. Li, Y. Song, and L. Sun, PdxAuy loaded reduced graphene oxide on nickel foam(PAGN) composite for high efficient methanol and ethanol electrooxidation. Solid State Sci. 110, 106467 (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106467.

    Article  CAS  Google Scholar 

  124. J. Yuan, H. Zhao, R. Ouyang, and Y. Miao, Ni-Mo nanorod bundles grown within nickel foam for excellent electrochemical performance. Int. J. Electrochem. Sci. 15, 9579 (2020). https://doi.org/10.20964/2020.10.08.

    Article  Google Scholar 

  125. T. Eisa, H.O. Mohamed, Y.J. Choi, S.G. Park, R. Ali, M.A. Abdelkareem, S.E. Oh, and K.J. Chae, Nickel nanorods over nickel foam as standalone anode for direct alkaline methanol and ethanol fuel cell. Int. J. Hydrogen Energy 45(10), 5948 (2020). https://doi.org/10.1016/j.ijhydene.2019.08.071.

    Article  CAS  Google Scholar 

  126. J. Zhang, P. Leung, F. Qiao, L. Xing, C. Yang, H. Su, and Q. Xu, Balancing the electron conduction and mass transfer: effect of nickel foam thickness on the performance of an alkaline direct ethanol fuel cell (ADEFC) with 3D porous anode. Int. J. Hydrogen Energy 45(38), 19801 (2020). https://doi.org/10.1016/j.ijhydene.2020.05.119.

    Article  CAS  Google Scholar 

  127. P.P. Tang, X. Lin, H. Yin, D.X. Zhang, H. Wen, J.J. Wang, and P. Wang, Hierarchically nanostructured nickel-cobalt alloy supported on nickel foam as a highly efficient electrocatalyst for hydrazine oxidation. ACS Sustain. Chem. Eng. 8(44), 16583 (2020). https://doi.org/10.1021/acssuschemeng.0c05846.

    Article  CAS  Google Scholar 

  128. R. Liu, W. Zhou, S. Li, F. Li, and W. Ling, Performance improvement of proton exchange membrane fuel cells with compressed nickel foam as flow field structure. Int. J. Hydrogen Energy 45(35), 17833 (2020). https://doi.org/10.1016/j.ijhydene.2020.04.238.

    Article  CAS  Google Scholar 

  129. K. Ćwieka, A. Lysik, T. Wejrzanowski, T. Norby, and W. Xing, Microstructure and electrochemical behavior of layered cathodes for molten carbonate fuel cell. J. Power Sources 500(April), 229949 (2021). https://doi.org/10.1016/j.jpowsour.2021.229949.

    Article  CAS  Google Scholar 

  130. X. Dong, S. Lu, W. Xu, and S. Li, The fabrication composite material of bimetallic micro/nanostructured palladium-platinum alloy and graphene on nickel foam for the enhancement of electrocatalytic activity. New J. Chem. 45(14), 6550 (2021). https://doi.org/10.1039/d1nj00196e.

    Article  CAS  Google Scholar 

  131. M.I. Abdullah, A. Hameed, N. Zhang, M.H. Islam, M. Ma, and B.G. Pollet, Ultrasonically surface-activated nickel foam as a highly efficient monolith electrode for the catalytic oxidation of methanol to formate. ACS Appl. Mater. Interfaces 13(26), 30603 (2021). https://doi.org/10.1021/acsami.1c06258.

    Article  CAS  Google Scholar 

  132. Y. Cao, J. Ge, M. Jiang, F. Zhang, and X. Lei, Acid-etched Co3O4 nanoparticles on nickel foam: the highly reactive (311) facet and enriched defects for boosting methanol oxidation electrocatalysis. ACS Appl. Mater. Interfaces 13(25), 29491 (2021). https://doi.org/10.1021/acsami.1c04045.

    Article  CAS  Google Scholar 

  133. B. Pan, F. Chen, J. Wang, Q. Tang, L. Guo, T. Jin, C. Peng, L. An, and Y. Chen, PdAuAg alloy nanoparticles on nickel foam as anode for passive air-breathing formate fuel cell. J. Electrochem. Soc. 168(6), 064519 (2021). https://doi.org/10.1149/1945-7111/ac0c31.

    Article  CAS  Google Scholar 

  134. L. Wang, G. Zhang, Y. Liu, W. Li, W. Lu, and H. Huang, Facile synthesis of a mechanically robust and highly porous NiO film with excellent electrocatalytic activity towards methanol oxidation. Nanoscale 8(21), 11256 (2016). https://doi.org/10.1039/c6nr01991a.

    Article  CAS  Google Scholar 

  135. Z. Jia, S.R. Rondiya, R.W. Cross, C. Wang, N.Y. Dzade, and C. Zhang, Highly active methanol oxidation electrocatalyst based on 2D NiO porous nanosheets: a combined computational and experimental study. Electrochim. Acta 394, 139143 (2021). https://doi.org/10.1016/j.electacta.2021.139143.

    Article  CAS  Google Scholar 

  136. N.A.M. Barakat, M.A. Abdelkareem, M. El-Newehy, and H.Y. Kim, Influence of the nanofibrous morphology on the catalytic activity of NiO nanostructures: an effective impact toward methanol electrooxidation. Nanoscale Res. Lett. 8(1), 1 (2013). https://doi.org/10.1186/1556-276X-8-402.

    Article  CAS  Google Scholar 

  137. Q. Luo, M. Peng, X. Sun, and A.M. Asiri, Hierarchical nickel oxide nanosheet@nanowire arrays on nickel foam: an efficient 3D electrode for methanol electro-oxidation. Catal. Sci. Technol. 6(4), 1157 (2016). https://doi.org/10.1039/c5cy01427a.

    Article  CAS  Google Scholar 

  138. D. Zhang, J. Zhang, H. Wang, C. Cui, W. Jiao, J. Gao, and Y. Liu, Novel Ni foam based nickel oxalate derived porous NiO nanostructures as highly efficient electrodes for the electrooxidation of methanol/ethanol and urea. J. Alloys Compd. 806, 1419 (2019). https://doi.org/10.1016/j.jallcom.2019.07.127.

    Article  CAS  Google Scholar 

  139. W. Yang, X. Yang, J. Jia, C. Hou, H. Gao, Y. Mao, C. Wang, J. Lin, and X. Luo, Oxygen vacancies confined in ultrathin nickel oxide nanosheets for enhanced electrocatalytic methanol oxidation. Appl. Catal. B Environ. 244, 1096 (2019). https://doi.org/10.1016/j.apcatb.2018.12.038.

    Article  CAS  Google Scholar 

  140. T.-J. Wang, H. Huang, X.-R. Wu, H.-C. Yao, F.-M. Li, P. Chen, P.-J. Jin, Z.-W. Deng, and Y. Chen, Self-template synthesis of defect-rich NiO nanotubes as efficient electrocatalysts for methanol oxidation reaction. Nanoscale 11(42), 19783 (2019). https://doi.org/10.1039/C9NR06304H.

    Article  CAS  Google Scholar 

  141. P. Arunachalam, M.A. Ghanem, A.M. Al-Mayouf, M. Al-shalwi, and O.H. Abd-Elkader, Microwave assisted synthesis and characterization of Ni/NiO nanoparticles as electrocatalyst for methanol oxidation in alkaline solution. Mater. Res. Express 4(2), 025035 (2017). https://doi.org/10.1088/2053-1591/aa5ed8.

    Article  CAS  Google Scholar 

  142. C. Xiao, Y. Li, X. Lu, and C. Zhao, Bifunctional porous NiFe/NiCo2O4/Ni foam electrodes with triple hierarchy and double synergies for efficient whole cell water splitting. Adv. Funct. Mater. 26(20), 3515 (2016). https://doi.org/10.1002/adfm.201505302.

    Article  CAS  Google Scholar 

  143. H. Wang, H.W. Lee, Y. Deng, Z. Lu, P.C. Hsu, Y. Liu, D. Lin, and Y. Cui, Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. (2015). https://doi.org/10.1038/ncomms8261.

    Article  Google Scholar 

  144. X. Zhang, H. Xu, X. Li, Y. Li, T. Yang, and Y. Liang, Facile synthesis of nickel-iron/nanocarbon hybrids as advanced electrocatalysts for efficient water splitting. ACS Catal. 6(2), 580 (2016). https://doi.org/10.1021/acscatal.5b02291.

    Article  CAS  Google Scholar 

  145. A. Toghraei, T. Shahrabi, and G. Barati Darband, Electrodeposition of self-supported Ni-Mo-P film on Ni foam as an affordable and high-performance electrocatalyst toward hydrogen evolution reaction. Electrochim. Acta 335, 135643 (2020). https://doi.org/10.1016/j.electacta.2020.135643.

    Article  CAS  Google Scholar 

  146. A. Sivanantham, P. Ganesan, and S. Shanmugam, Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: an efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv. Funct. Mater. 26(26), 4661 (2016). https://doi.org/10.1002/adfm.201600566.

    Article  CAS  Google Scholar 

  147. L. Kuai, J. Geng, C. Chen, E. Kan, Y. Liu, Q. Wang, and B. Geng, A reliable aerosol-spray-assisted approach to produce and optimize amorphous metal oxide catalysts for electrochemical water splitting. Angew. Chem. Int. Ed. 53(29), 7547 (2014). https://doi.org/10.1002/anie.201404208.

    Article  CAS  Google Scholar 

  148. X. Lv, Y. Zhu, H. Jiang, X. Yang, Y. Liu, Y. Su, J. Huang, Y. Yao, and C. Li, Hollow mesoporous NiCo2O4 nanocages as efficient electrocatalysts for oxygen evolution reaction. Dalt. Trans. 44(9), 4148 (2015). https://doi.org/10.1039/c4dt03803g.

    Article  CAS  Google Scholar 

  149. C. Zhou, J. Mu, Y.F. Qi, Q. Wang, X.J. Zhao, and E.C. Yang, Iron-substituted Co-Ni phosphides immobilized on Ni foam as efficient self-supported 3D hierarchical electrocatalysts for oxygen evolution reaction. Int. J. Hydrogen Energy 44(16), 8156 (2019). https://doi.org/10.1016/j.ijhydene.2019.02.053.

    Article  CAS  Google Scholar 

  150. S.H. Ahn and A. Manthiram, Direct growth of ternary Ni-Fe-P porous nanorods onto nickel foam as a highly active, robust bi-functional electrocatalyst for overall water splitting. J. Mater. Chem. A 5(6), 2496 (2017). https://doi.org/10.1039/c6ta10509b.

    Article  CAS  Google Scholar 

  151. K. Zeng and D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 36(3), 307 (2010). https://doi.org/10.1016/j.pecs.2009.11.002.

    Article  CAS  Google Scholar 

  152. J. Wang, W. Cui, Q. Liu, Z. Xing, A.M. Asiri, and X. Sun, Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 28(2), 215 (2016). https://doi.org/10.1002/adma.201502696.

    Article  CAS  Google Scholar 

  153. Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, and H. Dai, Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10(10), 780 (2011). https://doi.org/10.1038/nmat3087.

    Article  CAS  Google Scholar 

  154. C.C.L. McCrory, S. Jung, J.C. Peters, and T.F. Jaramillo, Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135(45), 16977 (2013). https://doi.org/10.1021/ja407115p.

    Article  CAS  Google Scholar 

  155. N.K. Chaudhari, H. Jin, B. Kim, and K. Lee, Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting. Nanoscale 9(34), 12231 (2017). https://doi.org/10.1039/c7nr04187j.

    Article  CAS  Google Scholar 

  156. C. Xiao, B. Zhang, and D. Li, Partial-sacrificial-template synthesis of Fe/Ni phosphides on Ni foam: a strongly stabilized and efficient catalyst for electrochemical water splitting. Electrochim. Acta 242, 260 (2017). https://doi.org/10.1016/j.electacta.2017.05.015.

    Article  CAS  Google Scholar 

  157. Z. Yang, R. He, H. Wu, Y. Ding, and H. Mei, Needle-like CoP/RGO growth on nickel foam as an efficient electrocatalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy 46(15), 9690 (2021). https://doi.org/10.1016/j.ijhydene.2020.07.114.

    Article  CAS  Google Scholar 

  158. J.L. Lado, X. Wang, E. Paz, E. Carbó-Argibay, N. Guldris, C. Rodríguez-Abreu, L. Liu, K. Kovnir, and Y.V. Kolenko, Design and synthesis of highly active Al-Ni-P foam electrode for hydrogen evolution reaction. ACS Catal. 5(11), 6503 (2015). https://doi.org/10.1021/acscatal.5b01761.

    Article  CAS  Google Scholar 

  159. N. Bai, Q. Li, D. Mao, D. Li, and H. Dong, One-step electrodeposition of Co/CoP film on Ni foam for efficient hydrogen evolution in alkaline solution. ACS Appl. Mater. Interfaces 8(43), 29400–29407 (2016). https://doi.org/10.1021/acsami.6b07785.

    Article  CAS  Google Scholar 

  160. W. Zhou, X.J. Wu, X. Cao, X. Huang, C. Tan, J. Tian, H. Liu, J. Wang, and H. Zhang, Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy Environ. Sci. 6(10), 2921 (2013). https://doi.org/10.1039/c3ee41572d.

    Article  CAS  Google Scholar 

  161. Y. Liang, X. Sun, A.M. Asiri, and Y. He, Amorphous Ni-B alloy nanoparticle film on Ni foam: rapid alternately dipping deposition for efficient overall water splitting. Nanotechnology (2016). https://doi.org/10.1088/0957-4484/27/12/12LT01.

    Article  Google Scholar 

  162. J. Cao, J. Zhou, Y. Zhang, Y. Wang, and X. Liu, Dominating role of aligned MoS2/Ni3S2 nanoarrays supported on three-dimensional Ni foam with hydrophilic interface for highly enhanced hydrogen evolution reaction. ACS Appl. Mater. Interfaces 10(2), 1752 (2018). https://doi.org/10.1021/acsami.7b16407.

    Article  CAS  Google Scholar 

  163. L. Yang, Z. Guo, J. Huang, Y. Xi, R. Gao, G. Su, W. Wang, L. Cao, and B. Dong, Vertical growth of 2D amorphous FePO4 nanosheet on Ni foam: outer and inner structural design for superior water splitting. Adv. Mater. 29(46), 1 (2017). https://doi.org/10.1002/adma.201704574.

    Article  CAS  Google Scholar 

  164. K.L. Yan, X. Shang, Z. Li, B. Dong, J.Q. Chi, Y.R. Liu, W.K. Gao, Y.M. Chai, and C.G. Liu, Facile synthesis of binary NiCoS nanorods supported on nickel foam as efficient electrocatalysts for oxygen evolution reaction. Int. J. Hydrogen Energy 42(27), 17129 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.235.

    Article  CAS  Google Scholar 

  165. T. Kou, S. Wang, J.L. Hauser, M. Chen, S.R.J. Oliver, Y. Ye, J. Guo, and Y. Li, Ni foam-supported Fe-doped β-Ni(OH)2 nanosheets show ultralow overpotential for oxygen evolution reaction. ACS Energy Lett. 4(3), 622 (2019). https://doi.org/10.1021/acsenergylett.9b00047.

    Article  CAS  Google Scholar 

  166. S. Niu, Y. Sun, G. Sun, D. Rakov, Y. Li, Y. Ma, J. Chu, and P. Xu, Stepwise electrochemical construction of FeOOH/Ni(OH)2 on Ni foam for enhanced electrocatalytic oxygen evolution. ACS Appl. Energy Mater. 2(5), 3927 (2019). https://doi.org/10.1021/acsaem.9b00785.

    Article  CAS  Google Scholar 

  167. Y. Gao, H. He, W. Tan, Y. Peng, X. Dai, and Y. Wu, One-step potentiostatic electrodeposition of Ni-Se-Mo film on Ni foam for alkaline hydrogen evolution reaction. Int. J. Hydrogen Energy 45(11), 6015 (2020). https://doi.org/10.1016/j.ijhydene.2019.12.163.

    Article  CAS  Google Scholar 

  168. C. Liang, W. Cao, L. Zhou, P. Yang, X. Zhao, P. Zhao, R. Qiu, L. Yang, Q. Huang, and D. Astruc, Design, synthesis and high HER performances of 3D Ni/Mo sulfide on Ni foam. ChemCatChem 12(6), 1647–1652 (2020). https://doi.org/10.1002/cctc.201902278.

    Article  CAS  Google Scholar 

  169. J. Li, W. Xu, J. Luo, D. Zhou, D. Zhang, L. Wei, P. Xu, and D. Yuan, Synthesis of 3d hexagram-like cobalt-manganese sulfides nanosheets grown on nickel foam: a bifunctional electrocatalyst for overall water splitting. Nano-Micro Lett. 10(1), 1 (2018). https://doi.org/10.1007/s40820-017-0160-6.

    Article  CAS  Google Scholar 

  170. K.L. Yan, J.F. Qin, Z.Z. Liu, B. Dong, J.Q. Chi, W.K. Gao, J.H. Lin, Y.M. Chai, and C.G. Liu, Organic-Inorganic hybrids-directed ternary NiFeMoS anemone-like nanorods with scaly surface supported on nickel foam for efficient overall water splitting. Chem. Eng. J. 2018(334), 922 (2017). https://doi.org/10.1016/j.cej.2017.10.074.

    Article  CAS  Google Scholar 

  171. G. Song, Z. Wang, J. Sun, J. Sun, D. Yuan, and L. Zhang, ZnCo2S4 nanosheet array anchored on nickel foam as electrocatalyst for electrochemical water splitting. Electrochem. Commun. 105(May), 106487 (2019). https://doi.org/10.1016/j.elecom.2019.106487.

    Article  CAS  Google Scholar 

  172. W. Wang, Z. Yang, F. Jiao, and Y. Gong, (P, W)-Codoped MoO2 nanoflowers on nickel foam as an efficient bifunctional electrocatalyst for overall water splitting. Appl. Surf. Sci. 529(April), 146987 (2020). https://doi.org/10.1016/j.apsusc.2020.146987.

    Article  CAS  Google Scholar 

  173. H. Xue, A. Meng, H. Zhang, Y. Lin, Z. Li, and C. Wang, 3D Urchin like V-doped CoP in situ grown on nickel foam as bifunctional electrocatalyst for efficient overall water-splitting. Nano Res. 12(1), 4173 (2021). https://doi.org/10.1007/s12274-021-3359-2.

    Article  CAS  Google Scholar 

  174. C. Zhang, X. Du, Y. Wang, X. Han, and X. Zhang, NiSe2@NixSy nanorod on nickel foam as efficient bifunctional electrocatalyst for overall water splitting. Int. J. Hydrogen Energy 46(70), 34713 (2021). https://doi.org/10.1016/j.ijhydene.2021.08.046.

    Article  CAS  Google Scholar 

  175. X. Wu, J. Li, Y. Li, and Z. Wen, NiFeP-MoO2 hybrid nanorods on nickel foam as high-activity and high-stability electrode for overall water splitting. Chem. Eng. J. 2021(409), 128161 (2020). https://doi.org/10.1016/j.cej.2020.128161.

    Article  CAS  Google Scholar 

  176. J. Dong, F.Q. Zhang, Y. Yang, Y.B. Zhang, H. He, X. Huang, X. Fan, and X.M. Zhang, (003)-Facet-exposed Ni3S2 nanoporous thin films on nickel foil for efficient water splitting. Appl. Catal. B Environ. 243, 693 (2019). https://doi.org/10.1016/j.apcatb.2018.11.003.

    Article  CAS  Google Scholar 

  177. C. Yang, M.Y. Gao, Q.B. Zhang, J.R. Zeng, X.T. Li, and A.P. Abbott, In-situ activation of self-supported 3D hierarchically porous Ni3S2 films grown on nanoporous copper as excellent PH-universal electrocatalysts for hydrogen evolution reaction. Nano Energy 36, 85–94 (2017). https://doi.org/10.1016/j.nanoen.2017.04.032.

    Article  CAS  Google Scholar 

  178. T.W. Lin, C.J. Liu, and C.S. Dai, Ni3S2/carbon nanotube nanocomposite as electrode material for hydrogen evolution reaction in alkaline electrolyte and enzyme-free glucose detection. Appl. Catal. B Environ. 154–155, 213 (2014). https://doi.org/10.1016/j.apcatb.2014.02.017.

    Article  CAS  Google Scholar 

  179. K. Cui, J. Fan, S. Li, S. Li, M. Fatiya Khadidja, J. Wu, M. Wang, J. Lai, H.-G. Jin, W. Luo, and Z. Chao, Facile synthesis and electrochemical performances of three dimensional Ni3S2 as bifunctional electrode for overall water splitting. Mater. Sci. Eng. B 263, 114875 (2021). https://doi.org/10.1016/j.mseb.2020.114875.

    Article  CAS  Google Scholar 

  180. T.A. Ho, C. Bae, H. Nam, E. Kim, S.Y. Lee, J.H. Park, and H. Shin, Metallic Ni3S2 films grown by atomic layer deposition as an efficient and stable electrocatalyst for overall water splitting. ACS Appl. Mater. Interfaces 10(15), 12807 (2018). https://doi.org/10.1021/acsami.8b00813.

    Article  CAS  Google Scholar 

  181. J. Li, P.K. Shen, and Z. Tian, One-step synthesis of Ni3S2 nanowires at low temperature as efficient electrocatalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy 42(10), 7136 (2017). https://doi.org/10.1016/j.ijhydene.2016.03.068.

    Article  CAS  Google Scholar 

  182. M. Yao, B. Sun, L. He, N. Wang, W. Hu, and S. Komarneni, Self-assembled Ni3S2 nanosheets with mesoporous structure tightly held on Ni foam as a highly efficient and long-term electrocatalyst for water oxidation. ACS Sustain. Chem. Eng. 7(5), 5430 (2019). https://doi.org/10.1021/acssuschemeng.8b06525.

    Article  CAS  Google Scholar 

  183. J. Shi, J. Hu, Y. Luo, X. Sun, and A.M. Asiri, Ni3Se2 film as a non-precious metal bifunctional electrocatalyst for efficient water splitting. Catal. Sci. Technol. 5(11), 4954 (2015). https://doi.org/10.1039/c5cy01121c.

    Article  CAS  Google Scholar 

  184. E. Crouch, D.C. Cowell, S. Hoskins, R.W. Pittson, and J.P. Hart, A novel, disposable, screen-printed amperometric biosensor for glucose in serum fabricated using a water-based carbon ink. Biosens. Bioelectron. 21(5), 712–718 (2005). https://doi.org/10.1016/j.bios.2005.01.003.

    Article  CAS  Google Scholar 

  185. E.B. Bahadir and M.K. Sezgintürk, Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses. Anal. Biochem. 478, 107 (2015). https://doi.org/10.1016/j.ab.2015.03.011.

    Article  CAS  Google Scholar 

  186. J. Yuan, K. Wang, and X. Xia, Highly ordered platinum-nanotubule arrays for amperometric glucose sensing. Adv. Funct. Mater. 15(5), 803 (2005). https://doi.org/10.1002/adfm.200400321.

    Article  CAS  Google Scholar 

  187. N.S. Oliver, C. Toumazou, A.E.G. Cass, and D.G. Johnston, Glucose sensors: a review of current and emerging technology. Diab. Med. 26, 197 (2009). https://doi.org/10.1111/j.1464-5491.2008.02642.x.

    Article  CAS  Google Scholar 

  188. A.A. Shulga, A.P. Soldatkin, A.V. Elskaya, S.V. Dzyadevich, S.V. Patskovsky, and V.I. Strikha, Thin-film conductometric biosensors for glucose and urea determination. Biosens. Bioelectron. 9(3), 217 (1994). https://doi.org/10.1016/0956-5663(94)80124-X.

    Article  CAS  Google Scholar 

  189. D. Nakayama, Y. Takeoka, M. Watanabe, and K. Kataoka, Simple and precise preparation of a porous gel for a colorimetric glucose sensor by a templating technique. Angew. Chem. 115(35), 4329 (2003). https://doi.org/10.1002/ange.200351746.

    Article  Google Scholar 

  190. J.C. Pickup, F. Hussain, N.D. Evans, O.J. Rolinski, and D.J.S. Birch, Fluorescence-based glucose sensors. Biosens. Bioelectron. 20, 2555 (2005). https://doi.org/10.1016/j.bios.2004.10.002.

    Article  CAS  Google Scholar 

  191. Y. Li, X. He, M. Guo, D. Lin, C. Xu, F. Xie, and X. Sun, Porous NiTe2 nanosheet array: an effective electrochemical sensor for glucose detection. Sens. Actuators B Chem. 274, 427 (2018). https://doi.org/10.1016/j.snb.2018.07.172.

    Article  CAS  Google Scholar 

  192. Y. Song, K. Qu, C. Zhao, J. Ren, and X. Qu, Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 22(19), 2206 (2010). https://doi.org/10.1002/adma.200903783.

    Article  CAS  Google Scholar 

  193. C. Xia and W. Ning, A novel non-enzymatic electrochemical glucose sensor modified with FeOOH nanowire. Electrochem. Commun. 12(11), 1581 (2010). https://doi.org/10.1016/j.elecom.2010.09.002.

    Article  CAS  Google Scholar 

  194. S. Wu, Z. Zeng, Q. He, Z. Wang, S.J. Wang, Y. Du, Z. Yin, X. Sun, W. Chen, and H. Zhang, Electrochemically reduced single-layer MoS2 nanosheets: characterization, properties, and sensing applications. Small 8(14), 2264 (2012). https://doi.org/10.1002/smll.201200044.

    Article  CAS  Google Scholar 

  195. E. Shoji and M. Freund, Synthesis and electrochemical properties of Poly (Aniline Boronic Acid): a novel transduction method for a non-enzymatic glucose sensor and a precursor route. J. Am. Chem. Soc 123, 3383 (2001).

    Article  CAS  Google Scholar 

  196. Z. Zhuang, X. Su, H. Yuan, Q. Sun, D. Xiao, and M.M.F. Choi, An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst 133(1), 126 (2008). https://doi.org/10.1039/b712970j.

    Article  CAS  Google Scholar 

  197. H.X. Wu, W.M. Cao, Y. Li, G. Liu, Y. Wen, H.F. Yang, and S.P. Yang, In situ growth of copper nanoparticles on multiwalled carbon nanotubes and their application as non-enzymatic glucose sensor materials. Electrochim. Acta 55(11), 3734 (2010). https://doi.org/10.1016/j.electacta.2010.02.017.

    Article  CAS  Google Scholar 

  198. S. Park, H. Boo, and T.D. Chung, Electrochemical non-enzymatic glucose sensors. Anal. Chim. Acta. 556, 46 (2006). https://doi.org/10.1016/j.aca.2005.05.080.

    Article  CAS  Google Scholar 

  199. H. Xu, C. Xia, S. Wang, F. Han, M.K. Akbari, Z. Hai, and S. Zhuiykov, Electrochemical non-enzymatic glucose sensor based on hierarchical 3D Co3O4/Ni heterostructure electrode for pushing sensitivity boundary to a new limit. Sens. Actuators B Chem. 267, 93 (2018). https://doi.org/10.1016/j.snb.2018.04.023.

    Article  CAS  Google Scholar 

  200. K.E. Toghill and R.G. Compton, Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation. Int. J. Electrochem. Sci. 5(9), 1246 (2010).

    CAS  Google Scholar 

  201. H. Nie, Z. Yao, X. Zhou, Z. Yang, and S. Huang, Nonenzymatic electrochemical detection of glucose using well-distributed nickel nanoparticles on straight multi-walled carbon nanotubes. Biosens. Bioelectron. 30(1), 28 (2011). https://doi.org/10.1016/j.bios.2011.08.022.

    Article  CAS  Google Scholar 

  202. Y. Mu, D. Jia, Y. He, Y. Miao, and H.L. Wu, Nano nickel oxide modified non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential. Biosens. Bioelectron. 26(6), 2948 (2011). https://doi.org/10.1016/j.bios.2010.11.042.

    Article  CAS  Google Scholar 

  203. W. Lu, X. Qin, A.M. Asiri, A.O. Al-Youbi, and X. Sun, Ni foam: a novel three-dimensional porous sensing platform for sensitive and selective nonenzymatic glucose detection. Analyst 138(2), 417 (2013). https://doi.org/10.1039/c2an36138h.

    Article  CAS  Google Scholar 

  204. N.I. Chandrasekaran and M. Manickam, A sensitive and selective non-enzymatic glucose sensor with hollow Ni-Al-Mn layered triple hydroxide nanocomposites modified Ni foam. Sens. Actuators B Chem. 2019(288), 188 (2018). https://doi.org/10.1016/j.snb.2019.02.102.

    Article  CAS  Google Scholar 

  205. C. Guo, Y. Wang, Y. Zhao, and C. Xu, Non-enzymatic glucose sensor based on three dimensional nickel oxide for enhanced sensitivity. Anal. Methods 5(7), 1644 (2013). https://doi.org/10.1039/c3ay00067b.

    Article  CAS  Google Scholar 

  206. C.W. Kung, Y.H. Cheng, and K.C. Ho, Single layer of nickel hydroxide nanoparticles covered on a porous Ni foam and its application for highly sensitive non-enzymatic glucose sensor. Sens. Actuators, B Chem. 204, 159 (2014). https://doi.org/10.1016/j.snb.2014.07.102.

    Article  CAS  Google Scholar 

  207. H. Huo, Y. Zhao, and C. Xu, 3D Ni3S2 nanosheet arrays supported on Ni foam for high-performance supercapacitor and non-enzymatic glucose detection. J. Mater. Chem. A 2(36), 15111 (2014). https://doi.org/10.1039/c4ta02857k.

    Article  CAS  Google Scholar 

  208. Y. Zhao, G. Gu, S. You, R. Ji, H. Suo, C. Zhao, and F. Liu, Preparation of Ni(OH)2 nanosheets on Ni foam via a direct precipitation method for a highly sensitive non-enzymatic glucose sensor. RSC Adv. 5(66), 53665 (2015). https://doi.org/10.1039/c5ra06664f.

    Article  CAS  Google Scholar 

  209. L. Wang, Y. Xie, C. Wei, X. Lu, X. Li, and Y. Song, Hierarchical NiO superstructures/foam Ni electrode derived from Ni metal-organic framework flakes on foam Ni for glucose sensing. Electrochim. Acta 174, 846 (2015). https://doi.org/10.1016/j.electacta.2015.06.086.

    Article  CAS  Google Scholar 

  210. B. Zhao, T. Wang, L. Jiang, K. Zhang, M.M.F. Yuen, J.-B. Xu, X.Z. Fu, R. Sun, and C.P. Wong, NiO mesoporous nanowalls grown on RGO coated nickel foam as high performance electrodes for supercapacitors and biosensors. Electrochim. Acta 192, 205 (2016). https://doi.org/10.1016/j.electacta.2016.01.211.

    Article  CAS  Google Scholar 

  211. L. Zhang, Y. Ding, R. Li, C. Ye, G. Zhao, and Y. Wang, Ni-based metal-organic framework derived Ni@C nanosheets on a Ni foam substrate as a supersensitive non-enzymatic glucose sensor. J. Mater. Chem. B 5(28), 5549 (2017). https://doi.org/10.1039/c7tb01363a.

    Article  CAS  Google Scholar 

  212. Y. Lu, B. Jiang, L. Fang, S. Fan, F. Wu, B. Hu, and F.M. Meng, Highly sensitive nonenzymatic glucose sensor based on 3D ultrathin NiFe layered double hydroxide nanosheets. Electroanalysis 29(7), 1755 (2017). https://doi.org/10.1002/elan.201700025.

    Article  CAS  Google Scholar 

  213. K. Xia, C. Yang, Y. Chen, L. Tian, Y. Su, J. Wang, and L. Li, In situ fabrication of Ni(OH)2 flakes on Ni foam through electrochemical corrosion as high sensitive and stable binder-free electrode for glucose sensing. Sens. Actuators B Chem. 240, 979 (2017). https://doi.org/10.1016/j.snb.2016.09.077.

    Article  CAS  Google Scholar 

  214. H. Dai, P. Cao, D. Chen, Y. Li, N. Wang, H. Ma, and M. Lin, Ni-Co-S/PPy core-shell nanohybrid on nickel foam as a non-enzymatic electrochemical glucose sensor. Synth. Met. 2018(235), 97 (2017). https://doi.org/10.1016/j.synthmet.2017.12.004.

    Article  CAS  Google Scholar 

  215. Q. Guo, W. Zeng, and Y. Li, Highly sensitive non-enzymatic glucose sensor based on porous NiCo2O4 nanowires grown on nickel foam. Mater. Lett. 256, 126603 (2019). https://doi.org/10.1016/j.matlet.2019.126603.

    Article  CAS  Google Scholar 

  216. A. Hayat, S.K.B. Mane, N. Shaishta, J. Khan, A. Hayat, G. Keyum, I. Uddin, F. Raziq, M. Khan, and G. Manjunatha, Nickel oxide nano-particles on 3D nickel foam substrate as a non-enzymatic glucose sensor. J. Electrochem. Soc. 166(15), B1602 (2019). https://doi.org/10.1149/2.0491915jes.

    Article  CAS  Google Scholar 

  217. S. Liu, W. Zeng, and Y. Li, Synthesis of ZnCo2O4 microrods grown on nickel foam for non-enzymatic glucose sensing. Mater. Lett. 259, 126820 (2020). https://doi.org/10.1016/j.matlet.2019.126820.

    Article  CAS  Google Scholar 

  218. A. Farid, L. Pan, M. Usman, I.A. Khan, A.S. Khan, A. Ahmad, and M. Javid, In-situ growth of porous CoTe2 nanosheets array on 3D nickel foam for highly sensitive binder-free non-enzymatic glucose sensor. J. Alloys Compd. 861, 158642 (2021). https://doi.org/10.1016/j.jallcom.2021.158642.

    Article  CAS  Google Scholar 

  219. H. Jeong, L.K. Kwac, C.G. Hong, and H.G. Kim, Direct growth of flower like-structured CuFe oxide on graphene supported nickel foam as an effective sensor for glucose determination. Mater. Sci. Eng. C 2021(118), 111510 (April 2020). https://doi.org/10.1016/j.msec.2020.111510.

    Article  CAS  Google Scholar 

  220. C. Wang, B. Han, J. Li, Q. Gao, K. Xia, and C. Zhou, Direct epitaxial growth of nickel phosphide nanosheets on nickel foam as self-support electrode for efficient non-enzymatic glucose sensing. Nanotechnology 32(43), 435501 (2021). https://doi.org/10.1088/1361-6528/ac162f.

    Article  CAS  Google Scholar 

  221. X. Li, X. Lu, X. Kan, X. Li, X. Lu, and X. Kan, 3D electrochemical sensor based on Poly(Hydroquinone)/gold nanoparticles/nickel foam for dopamine sensitive detection. J. Electroanal. Chem. 799(June), 451 (2017). https://doi.org/10.1016/j.jelechem.2017.06.047.

    Article  CAS  Google Scholar 

  222. R.A. Soomro, Z.H. Ibupoto, M.I. Abro, and M. Willander, Electrochemical sensing of glucose based on novel hedgehog-like NiO nanostructures. Sens. Actuators B Chem. 209, 966 (2015). https://doi.org/10.1016/j.snb.2014.12.050.

    Article  CAS  Google Scholar 

  223. G. He, L. Tian, Y. Cai, S. Wu, Y. Su, H. Yan, W. Pu, J. Zhang, and L. Li, Sensitive nonenzymatic electrochemical glucose detection based on hollow porous NiO. Nanoscale Res. Lett. 13(1), 3 (2018). https://doi.org/10.1186/s11671-017-2406-0.

    Article  CAS  Google Scholar 

  224. C. Zhang, L. Qian, K. Zhang, S. Yuan, J. Xiao, and S. Wang, Hierarchical porous Ni/NiO core-shells with superior conductivity for electrochemical pseudo-capacitors and glucose sensors. J. Mater. Chem. A 3(19), 10519 (2015). https://doi.org/10.1039/c5ta01071c.

    Article  CAS  Google Scholar 

  225. F.J. Garcia-Garcia, P. Salazar, F. Yubero, and A.R. González-Elipe, Non-enzymataic glucose electrochemical sensor made of porous NiO thin films prepared by reactive magnetron sputtering at oblique angles. Electrochim. Acta 201, 38 (2016). https://doi.org/10.1016/j.electacta.2016.03.193.

    Article  CAS  Google Scholar 

  226. R. Ahmad, M. Khan, N. Tripathy, M.I.R. Khan, and A. Khosla, Hydrothermally synthesized nickel oxide nanosheets for non-enzymatic electrochemical glucose detection. J. Electrochem. Soc. 167(10), 107504 (2020). https://doi.org/10.1149/1945-7111/ab9757.

    Article  CAS  Google Scholar 

  227. N. Singer, R.G. Pillai, A.I.D. Johnson, K.D. Harris, and A.B. Jemere, Nanostructured nickel oxide electrodes for non-enzymatic electrochemical glucose sensing. Microchim. Acta 187(4), 196 (2020). https://doi.org/10.1007/s00604-020-4171-5.

    Article  CAS  Google Scholar 

  228. J. Gu, Y. Xu, Q. Li, and H. Pang, Porous Ni/NiO nanohybrids for electrochemical catalytic glucose oxidation. Chin. Chem. Lett. 32(6), 2017–2020 (2021). https://doi.org/10.1016/j.cclet.2020.11.066.

    Article  CAS  Google Scholar 

  229. S. Wang, C. Wang, G. Wei, H. Xiao, N. An, Y. Zhou, C. An, and J. Zhang, Non-enzymatic glucose sensor based on facial hydrothermal synthesized NiO nanosheets loaded on glassy carbon electrode. Colloids Surf. A Physicochem. Eng. Asp. 509, 252 (2016). https://doi.org/10.1016/j.colsurfa.2016.08.076.

    Article  CAS  Google Scholar 

  230. L. Zhang, J. Liu, X. Peng, Q. Cui, D. He, C. Zhao, and H. Suo, Fabrication of a Ni foam-supported platinum nanoparticles-silver/polypyrrole electrode for aqueous ammonia sensing. Synth. Met. 2020(259), 116257 (2019). https://doi.org/10.1016/j.synthmet.2019.116257.

    Article  CAS  Google Scholar 

  231. F.C. Moreira, R.A.R. Boaventura, E. Brillas, and V.J.P. Vilar, Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters. Appl. Catal. B Environ. 202, 217 (2017). https://doi.org/10.1016/j.apcatb.2016.08.037.

    Article  CAS  Google Scholar 

  232. Y. Zhang, Q. Zhang, S. Zuo, M. Zhou, Y. Pan, G. Ren, Y. Li, and Y. Zhang, A highly efficient flow-through electro-fenton system enhanced with nitrilotriacetic acid for phenol removal at neutral PH. Sci. Total Environ. 697, 134173 (2019). https://doi.org/10.1016/j.scitotenv.2019.134173.

    Article  CAS  Google Scholar 

  233. T. Zhang, Y. Wang, Y. Hu, Z. Wang, J. Chen, X. Niu, Y. Li, and X. Gong, HO[Rad] selective cleavage Fe[Sbnd]S bond for FeS2 electrolysis in alkaline solution. Electrochim. Acta 306, 327 (2019). https://doi.org/10.1016/j.electacta.2019.03.114.

    Article  CAS  Google Scholar 

  234. F. Deng, H. Olvera-Vargas, O. Garcia-Rodriguez, S. Qiu, F. Ma, Z. Chen, and O. Lefebvre, Unconventional electro-fenton process operating at a wide PH range with Ni foam cathode and tripolyphosphate electrolyte. J. Hazard. Mater. 396(April), 122641 (2020). https://doi.org/10.1016/j.jhazmat.2020.122641.

    Article  CAS  Google Scholar 

  235. J.J. Pignatello, E. Oliveros, and A. MacKay, Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry. Crit. Rev. Environ. Sci. Technol. 36(1), 1 (2006). https://doi.org/10.1080/10643380500326564.

    Article  CAS  Google Scholar 

  236. P.V. Nidheesh and R. Gandhimathi, Trends in electro-fenton process for water and wastewater treatment: an overview. Desalination 299, 1 (2012). https://doi.org/10.1016/j.desal.2012.05.011.

    Article  CAS  Google Scholar 

  237. I. Sirés, E. Brillas, M.A. Oturan, M.A. Rodrigo, and M. Panizza, Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ. Sci. Pollut. Res. 21(14), 8336 (2014). https://doi.org/10.1007/s11356-014-2783-1.

    Article  CAS  Google Scholar 

  238. M. Hassan, H. Olvera-Vargas, X. Zhu, B. Zhang, and Y. He, Microbial electro-fenton: an emerging and energy-efficient platform for environmental remediation. J. Power Sources 424(March), 220 (2019). https://doi.org/10.1016/j.jpowsour.2019.03.112.

    Article  CAS  Google Scholar 

  239. W.W. Mohn and J.M. Tiedje, Microbial reductive dehalogenation. Microbiol. Rev. 56, 482 (1992). https://doi.org/10.1128/mmbr.56.3.482-507.1992.

    Article  CAS  Google Scholar 

  240. Z. Cao, X. Liu, J. Xu, J. Zhang, Y. Yang, J. Zhou, X. Xu, and G.V. Lowry, Removal of antibiotic florfenicol by sulfide-modified nanoscale zero-valent iron. Environ. Sci. Technol. 51(19), 11269 (2017). https://doi.org/10.1021/acs.est.7b02480.

    Article  CAS  Google Scholar 

  241. Y. Han, C. Liu, J. Horita, and W. Yan, Trichloroethene hydrodechlorination by Pd-Fe bimetallic nanoparticles: solute-induced catalyst deactivation analyzed by carbon isotope fractionation. Appl. Catal. B Environ. 188, 77 (2016). https://doi.org/10.1016/j.apcatb.2016.01.047.

    Article  CAS  Google Scholar 

  242. F.D. Kopinke, G. Speichert, K. Mackenzie, and E. Hey-Hawkins, Reductive dechlorination in water: interplay of sorption and reactivity. Appl. Catal. B Environ. 181, 747 (2016). https://doi.org/10.1016/j.apcatb.2015.08.031.

    Article  CAS  Google Scholar 

  243. X. Liu, Z. Cao, Z. Yuan, J. Zhang, X. Guo, Y. Yang, F. He, Y. Zhao, and J. Xu, Insight into the kinetics and mechanism of removal of aqueous chlorinated nitroaromatic antibiotic chloramphenicol by nanoscale zero-valent iron. Chem. Eng. J. 2018(334), 508 (2017). https://doi.org/10.1016/j.cej.2017.10.060.

    Article  CAS  Google Scholar 

  244. X. Mao, A. Ciblak, K. Baek, M. Amiri, R. Loch-Caruso, and A.N. Alshawabkeh, Optimization of electrochemical dechlorination of trichloroethylene in reducing electrolytes. Water Res. 46(6), 1847 (2012). https://doi.org/10.1016/j.watres.2012.01.002.

    Article  CAS  Google Scholar 

  245. S. Song, Y. Su, A.S. Adeleye, Y. Zhang, and X. Zhou, Optimal design and characterization of sulfide-modified nanoscale zerovalent iron for diclofenac removal. Appl. Catal. B Environ. 201, 211 (2017). https://doi.org/10.1016/j.apcatb.2016.07.055.

    Article  CAS  Google Scholar 

  246. K.A.P. Payne, C.P. Quezada, K. Fisher, M.S. Dunstan, F.A. Collins, H. Sjuts, C. Levy, S. Hay, S.E.J. Rigby, and D. Leys, Reductive dehalogenase structure suggests a mechanism for B12-dependent dehalogenation. Nature 517(7535), 513 (2015). https://doi.org/10.1038/nature13901.

    Article  CAS  Google Scholar 

  247. Y. Li, X. Li, Y. Sun, X. Zhao, and Y. Li, Cathodic microbial community adaptation to the removal of chlorinated herbicide in soil microbial fuel cells. Environ. Sci. Pollut. Res. 25(17), 16900 (2018). https://doi.org/10.1007/s11356-018-1871-z.

    Article  CAS  Google Scholar 

  248. Y. Xu, K.B. Gregory, and J.M. VanBriesen, Microbial-catalyzed reductive dechlorination of polychlorinated biphenyls in hudson and grasse river sediment microcosms: determination of dechlorination preferences and identification of rare ortho removal pathways. Environ. Sci. Technol. 50(23), 12767 (2016). https://doi.org/10.1021/acs.est.6b03892.

    Article  CAS  Google Scholar 

  249. S. Agarwal, S.R. Al-Abed, and D.D. Dionysiou, Impact of organic solvents and common anions on 2-chlorobiphenyl dechlorination kinetics with Pd/Mg. Appl. Catal. B Environ. 92(1–2), 17 (2009). https://doi.org/10.1016/j.apcatb.2009.07.029.

    Article  CAS  Google Scholar 

  250. Y. Liu, T. Phenrat, and G.V. Lowry, Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution. Environ. Sci. Technol. 41(22), 7881 (2007). https://doi.org/10.1021/es0711967.

    Article  CAS  Google Scholar 

  251. J. Zhou, Y. Han, W. Wang, Z. Xu, H. Wan, D. Yin, S. Zheng, and D. Zhu, Reductive removal of chloroacetic acids by catalytic hydrodechlorination over Pd/ZrO2 catalysts. Appl. Catal. B Environ. 134–135, 222 (2013). https://doi.org/10.1016/j.apcatb.2013.01.005.

    Article  CAS  Google Scholar 

  252. R.M. Hozalski, L. Zhang, and W.A. Arnold, Reduction of haloacetic acids by Fe0: implications for treatment and fate. Environ. Sci. Technol. 35(11), 2258 (2001). https://doi.org/10.1021/es001785b.

    Article  CAS  Google Scholar 

  253. D. Li, Z. Mao, Y. Zhong, W. Huang, Y. Wu, and P. Peng, Reductive transformation of tetrabromobisphenol A by sulfidated nano zerovalent iron. Water Res. 103, 1 (2016). https://doi.org/10.1016/j.watres.2016.07.003.

    Article  CAS  Google Scholar 

  254. B. Zhao, X. Li, W. Li, L. Yang, J. Li, W. Xia, L. Zhou, F. Wang, and C. Zhao, Degradation of trichloroacetic acid by an efficient fenton/UV/TiO2 hybrid process and investigation of synergetic effect. Chem. Eng. J. 273, 527 (2015). https://doi.org/10.1016/j.cej.2015.03.012.

    Article  CAS  Google Scholar 

  255. E.T. Martin, C.M. McGuire, M.S. Mubarak, and D.G. Peters, Electroreductive remediation of halogenated environmental pollutants. Chem. Rev. 116(24), 15198 (2016). https://doi.org/10.1021/acs.chemrev.6b00531.

    Article  CAS  Google Scholar 

  256. I.F. Cheng, Q. Fernando, and N. Korte, Electrochemical dechlorination of 4-chlorophenol to phenol. Environ. Sci. Technol. 31(4), 1074 (1997). https://doi.org/10.1021/es960602b.

    Article  CAS  Google Scholar 

  257. J. Radjenović, M.J. Farré, Y. Mu, W. Gernjak, and J. Keller, Reductive electrochemical remediation of emerging and regulated disinfection byproducts. Water Res. 46(6), 1705 (2012). https://doi.org/10.1016/j.watres.2011.12.042.

    Article  CAS  Google Scholar 

  258. B. Yang, G. Yu, and J. Huang, Electrocatalytic hydrodechlorination of 2,4,5-trichlorobiphenyl on a palladium-modified nickel foam cathode. Environ. Sci. Technol. 41(21), 7503 (2007). https://doi.org/10.1021/es071168o.

    Article  CAS  Google Scholar 

  259. J.Y. Lee, J.G. Lee, S.H. Lee, M. Seo, L. Piao, J.H. Bae, S.Y. Lim, Y.J. Park, and T.D. Chung, Hydrogen-atom-mediated electrochemistry. Nat. Commun. 4(May), 1 (2013). https://doi.org/10.1038/ncomms3766.

    Article  CAS  Google Scholar 

  260. A. Li, X. Zhao, Y. Hou, H. Liu, L. Wu, and J. Qu, The electrocatalytic dechlorination of chloroacetic acids at electrodeposited Pd/Fe-modified carbon paper electrode. Appl. Catal. B Environ. 111–112, 628 (2012). https://doi.org/10.1016/j.apcatb.2011.11.016.

    Article  CAS  Google Scholar 

  261. C. Sun, S.A. Baig, Z. Lou, J. Zhu, Z. Wang, X. Li, J. Wu, Y. Zhang, and X. Xu, Electrocatalytic dechlorination of 2,4-dichlorophenoxyacetic acid using nanosized titanium nitride doped palladium/nickel foam electrodes in aqueous solutions. Appl. Catal. B Environ. 158–159, 38 (2014). https://doi.org/10.1016/j.apcatb.2014.04.004.

    Article  CAS  Google Scholar 

  262. W. Xie, S. Yuan, X. Mao, W. Hu, P. Liao, M. Tong, and A.N. Alshawabkeh, Electrocatalytic activity of Pd-loaded Ti/TiO2 nanotubes cathode for TCE reduction in groundwater. Water Res. 47(11), 3573 (2013). https://doi.org/10.1016/j.watres.2013.04.004.

    Article  CAS  Google Scholar 

  263. L. Yang, Z. Chen, D. Cui, X. Luo, B. Liang, L. Yang, T. Liu, A. Wang, and S. Luo, Ultrafine palladium nanoparticles supported on 3D self-supported Ni foam for cathodic dechlorination of florfenicol. Chem. Eng. J. 2019(359), 894 (2018). https://doi.org/10.1016/j.cej.2018.11.099.

    Article  CAS  Google Scholar 

  264. Z. Lou, J. Zhou, M. Sun, J. Xu, K. Yang, D. Lv, Y. Zhao, and X. Xu, MnO2 enhances electrocatalytic hydrodechlorination by Pd/Ni foam electrodes and reduces Pd needs. Chem. Eng. J. 352(July), 549 (2018). https://doi.org/10.1016/j.cej.2018.07.057.

    Article  CAS  Google Scholar 

  265. C. Guo, J. Ran, A. Vasileff, and S.Z. Qiao, Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 11(1), 45 (2018). https://doi.org/10.1039/c7ee02220d.

    Article  CAS  Google Scholar 

  266. X. Cui, C. Tang, and Q. Zhang, A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 8(22), 1 (2018). https://doi.org/10.1002/aenm.201800369.

    Article  CAS  Google Scholar 

  267. G. Marnellos and M. Stoukides, Ammonia synthesis at atmospheric pressure. Science. 282(5386), 98 (1998). https://doi.org/10.1126/science.282.5386.98.

    Article  CAS  Google Scholar 

  268. X. Ren, J. Zhao, Q. Wei, Y. Ma, H. Guo, Q. Liu, Y. Wang, G. Cui, A.M. Asiri, B. Li, B. Tang, and X. Sun, High-performance N2-to-NH3 conversion electrocatalyzed by Mo2C nanorod. ACS Cent. Sci. 5(1), 116 (2019). https://doi.org/10.1021/acscentsci.8b00734.

    Article  CAS  Google Scholar 

  269. Y. Li, H. Yu, Z. Wang, S. Liu, Y. Xu, X. Li, L. Wang, and H. Wang, Boron-doped silver nanosponges with enhanced performance towards electrocatalytic nitrogen reduction to ammonia. Chem. Commun. 55(98), 14745 (2019). https://doi.org/10.1039/c9cc07232b.

    Article  CAS  Google Scholar 

  270. X. Li, X. Ren, X. Liu, J. Zhao, X. Sun, Y. Zhang, X. Kuang, T. Yan, Q. Wei, and D. Wu, A MoS2 nanosheet-reduced graphene oxide hybrid: an efficient electrocatalyst for electrocatalytic N2 reduction to NH3 under ambient conditions. J. Mater. Chem. A 7(6), 2524 (2019). https://doi.org/10.1039/c8ta10433f.

    Article  CAS  Google Scholar 

  271. R. Zhang, X. Ren, X. Shi, F. Xie, B. Zheng, X. Guo, and X. Sun, Enabling effective electrocatalytic N2 conversion to NH3 by the TiO2 nanosheets array under ambient conditions. ACS Appl. Mater. Interfaces 10(34), 28251 (2018). https://doi.org/10.1021/acsami.8b06647.

    Article  CAS  Google Scholar 

  272. Z. Wang, Y. Li, H. Yu, Y. Xu, H. Xue, X. Li, H. Wang, and L. Wang, Ambient electrochemical synthesis of ammonia from nitrogen and water catalyzed by flower-like gold microstructures. ChemSusChem 11(19), 3480 (2018). https://doi.org/10.1002/cssc.201801444.

    Article  CAS  Google Scholar 

  273. H. Wang, H. Yu, Z. Wang, Y. Li, Y. Xu, X. Li, H. Xue, and L. Wang, Electrochemical fabrication of porous Au film on Ni foam for nitrogen reduction to ammonia. Small 15(6), 1 (2019). https://doi.org/10.1002/smll.201804769.

    Article  CAS  Google Scholar 

  274. H. Yu, Z. Wang, S. Yin, C. Li, Y. Xu, X. Li, L. Wang, and H. Wang, Mesoporous Au3Pd film on Ni foam: a self-supported electrocatalyst for efficient synthesis of ammonia. ACS Appl. Mater. Interfaces 12(1), 436 (2020). https://doi.org/10.1021/acsami.9b14187.

    Article  CAS  Google Scholar 

  275. Z. Wang, Z. Dai, H. Yu, H. Zhang, W. Tian, Y. Xu, X. Li, L. Wang, and H. Wang, Pore-size-tuned Pd films grown on Ni foam as an advanced catalyst for electrosynthesis of ammonia. ACS Sustain. Chem. Eng. 8(31), 11827 (2020). https://doi.org/10.1021/acssuschemeng.0c04295.

    Article  CAS  Google Scholar 

  276. Y. Li, H. Yu, Z. Wang, S. Liu, Y. Xu, X. Li, L. Wang, and H. Wang, One-step synthesis of self-standing porous palladium-ruthenium nanosheet array on Ni foam for ambient electrosynthesis of ammonia. Int. J. Hydrogen Energy 45(11), 5997 (2020). https://doi.org/10.1016/j.ijhydene.2019.12.098.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

MSR is grateful for the financial support from the Gauteng City-Region Academy (GCRA). BLOP is grateful for the financial support from the Learning Academy of the Department of Water and Sanitation. KM and KDM are grateful for the financial support from the National Research Foundation, South Africa, under the Thuthuka programme (UID nos. 117984 and 118113) and the Competitive Support for Unrated Researchers (UID no. 138085).

Funding

The research received no outside funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Katlego Makgopa or Kabir O. Oyedotun.

Ethics declarations

Conflict of interest

There are no conflicts of interest declared by the authors.

Human or Animal Rights

There are no studies using human or animal subjects in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ratsoma, M.S., Poho, B.L.O., Makgopa, K. et al. Application of Nickel Foam in Electrochemical Systems: A Review. J. Electron. Mater. 52, 2264–2291 (2023). https://doi.org/10.1007/s11664-023-10244-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10244-w

Keywords

Navigation