Skip to main content
Log in

First-Principles Study of Lattice Thermal Conductivity in Janus MoSSe Bilayers with Different Stacking Modes

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Recently, derivatives of molybdenum disulfide have attracted considerable attention. Among them, the thermal conductivity of Janus-based MoSSe SeS, SeSe and SS bilayers has not been investigated. Along these lines, in this work, the lattice thermal conductivities of Janus MoSSe-based bilayer structures were examined. More specifically, three different combined modes were used, including SMoSe/SMoSe (SeS stacking), SMoSe/SeMoS (SeSe stacking) and SeMoS/SMoSe (SS stacking), based on first-principles calculations. The extracted results show that the lattice thermal conductivity of all three structures is decreased with increasing temperature, whereas the SeS structure has a maximum lattice thermal conductivity value of about 22 W/mK at 300 K. The SS structure exhibits also the strongest phonon anharmonicity and highest phonon scattering effects, which leads to the smallest lattice thermal conductivity value of about 1.57 W/mK in the x-direction at room temperature, rendering the proposed configuration well suited for thermoelectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K.Y. Hwa, A. Santhan, and T.S.K. Sharma, One-dimensional self-assembled Co2SnO4 nanosphere to nanocubes intertwined in two-dimensional reduced graphene oxide: an intriguing electrocatalytic sensor toward mesalamine detection. Mater. Today Chem. 23, 100739 (2022).

    Article  CAS  Google Scholar 

  2. S. Faraji, B. Wang, H.O. Valencia, and G. Frapper, Computational discovery of two-dimensional copper chalcogenides Cu X (X= S, Se, Te). Phys. Rev. Mater. 5, 124007 (2021).

    Article  CAS  Google Scholar 

  3. T. Li, D. Shang, S. Gao, B. Wang, H. Kong, G. Yang, W. Shu, P. Xu, and G. Wei, Two-dimensional material-based electrochemical sensors/biosensors for food safety and biomolecular detection. J. Biosens. 12, 314 (2022).

    Article  CAS  Google Scholar 

  4. X. Chen, H. Yu, Y. Gao, L. Wang, and G. Wang, The marriage of two-dimensional materials and phase change materials for energy storage, conversion and applications. Energy Chem. 4, 100071 (2022).

    Article  CAS  Google Scholar 

  5. P. Priya, T.C. Nguyen, A. Saxena, and N.R. Aluru, Machine learning assisted screening of two-dimensional materials for water desalination. ACS Nano 16, 1929–1939 (2022).

    Article  CAS  Google Scholar 

  6. A.-Y. Lu, H. Zhu, J. Xiao, C.-P. Chuu, Y. Han, M.-H. Chiu, C.-C. Cheng, C.-W. Yang, K.-H. Wei, Y. Yang, Y. Wang, D. Sokaras, D. Nordlund, P. Yang, D.A. Muller, M.-Y. Chou, X. Zhang, and L.-J. Li, Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 12, 744–749 (2017).

    Article  CAS  Google Scholar 

  7. M.N. Blonsky, H.L. Zhuang, A.K. Singh, and R.G. Hennig, Ab initio prediction of piezoelectricity in two-dimensional materials. ACS Nano 9, 9885 (2015).

    Article  CAS  Google Scholar 

  8. H. Liu, G. Qin, Y. Lin, and M. Hu, Disparate strain dependent thermal conductivity of two-dimensional penta-structures. Nano Lett. 16, 3831–3842 (2016).

    Article  CAS  Google Scholar 

  9. J. Wallbank, D. Ghazaryan, A. Misra, Y. Cao, J.-S. Tu, B. Piot, M. Potemski, S. Pezzini, S. Wiedmann, and U. Zeitler, Tuning the valley and chiral quantum state of Dirac electrons in van der Waals heterostructures. Science 353, 575–579 (2016).

    Article  CAS  Google Scholar 

  10. X. Meng, T. Pandey, J. Jeong, S. Fu, J. Yang, K. Chen, A. Singh, F. He, X. Xu, J. Zhou, W.-P. Hsieh, A.K. Singh, J.-F. Lin, and Y. Wang, Thermal conductivity enhancement in MoS2 under extreme strain. Phys. Rev. Lett. 122, 155901 (2019).

    Article  CAS  Google Scholar 

  11. G.R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M.S. Strano, V.R. Cooper, L. Liang, S.G. Louie, E. Ringe, W. Zhou, S.S. Kim, R.R. Naik, B.G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J.A. Schuller, R.E. Schaak, M. Terrones, and J.A. Robinson, Recent advances in two-dimensional materials beyond graphene. ACS Nano 9, 11509–11539 (2015).

    Article  CAS  Google Scholar 

  12. N.P. Padture, M. Gell, and E.H. Jordan, Thermal barrier coatings for gas-turbine engine applications. Science 296, 280 (2002).

    Article  CAS  Google Scholar 

  13. A. Okawa, S.T. Nguyen, J.P. Wiff, H.W. Son, T. Nakayama, H. Hashimoto, T. Sekino, T.M.D. Do, H. Suematsu, T. Suzuki, T. Goto, and K. Niihara, Self-healing ability, strength enhancement, and high-temperature oxidation behavior of silicon carbide-dispersed ytterbium disilicate composite for environmental barrier coatings under isothermal heat treatment. J. Eur. Ceram. Soc. 42, 6170–6181 (2022).

    Article  CAS  Google Scholar 

  14. H. Qin, K. Ren, G. Zhang, Y. Dai, and G. Zhang, Lattice thermal conductivity of Janus MoSSe and WSSe monolayers. Phys. Chem. Chem. Phys. 24, 20437–20444 (2022).

    Article  CAS  Google Scholar 

  15. K. Ren, H. Qin, H. Liu, Y. Chen, X. Liu, and G. Zhang, Manipulating interfacial thermal conduction of 2D Janus heterostructure via a thermo-mechanical coupling. Adv. Funct. Mater. 32, 2110846 (2022).

    Article  CAS  Google Scholar 

  16. D.D. Sarma, Essential considerations for reporting thermoelectric properties. ACS Energy Lett. 6, 3715–3718 (2021).

    Article  CAS  Google Scholar 

  17. Y. Wang, Z. Bai, Y. Guo, C. Liu, Q. Jiang, F. Jiang, J. Yang, W. Ding, P. Liu, and J. Xu, Recent advances in 2D material/conducting polymer composites for thermoelectric energy conversion. Macromol. Mater. Eng. 307, 2200107 (2022).

    Article  CAS  Google Scholar 

  18. S.-Z. Huang, J.-X. Guo, B.-Y. Wang, H.-D. Yang, Q.-Y. Feng, B. Li, X. Xiang, X.-T. Zu, and H.-X. Deng, Optical-acoustic phonon hybridization enhanced thermoelectric performance in a 1T′ phase OsTe2 monolayer. ACS Appl. Energy Mater. 5, 14513–14521 (2022).

    Article  CAS  Google Scholar 

  19. M. Arrigoni, J. Carrete, N. Mingo, and G.K.H. Madsen, First-principles quantitative prediction of the lattice thermal conductivity in random semiconductor alloys: the role of force-constant disorder. Phys. Rev. B 98, 115205 (2018).

    Article  CAS  Google Scholar 

  20. Y. Machida, N. Matsumoto, T. Isono, and K.J.S. Behnia, Phonon hydrodynamics and ultrahigh-room-temperature thermal conductivity in thin graphite. Science 367, 309–312 (2020).

    Article  CAS  Google Scholar 

  21. Z. Tong, T. Dumitrică, and T. Frauenheim, Ultralow thermal conductivity in two-dimensional MoO3. Nano Lett. 21, 4351–4356 (2021).

    Article  CAS  Google Scholar 

  22. S. Lee, J.-E. Jung, H.-G. Kim, Y. Lee, J.M. Park, J. Jang, S. Yoon, A. Ghosh, M. Kim, J. Kim, W. Na, J. Kim, H.J. Choi, H. Cheong, and K. Kim, γ-GeSe: a new hexagonal polymorph from group IV–VI monochalcogenides. Nano Lett. 21, 4305–4313 (2021).

    Article  CAS  Google Scholar 

  23. Q. Zhong, Z. Dai, J. Liu, Y. Zhao, and S. Meng, A comprehensive phonon thermal transport study of 2D hexagonal MX2 and orthorhombic M2X3 (M = Ni, Pd; X = S, Se and Te). Mater. Today Commun. 25, 101441 (2020).

    Article  CAS  Google Scholar 

  24. A. Pandit and B. Hamad, Thermoelectric and lattice dynamics properties of layered MX (M = Sn, Pb; X = S, Te) compounds. Appl. Surf. Sci. 538, 147911 (2021).

    Article  CAS  Google Scholar 

  25. H. Wang, B. Dai, N.-N. Ge, X.-W. Zhang, and G.-F. Ji, High thermoelectric performance of Janus monolayer and bilayer HfSSe. Phys. Status Solidi B 259, 2200090 (2022).

    Article  CAS  Google Scholar 

  26. N. Wang, C. Shen, Z. Sun, H. Xiao, H. Zhang, Z. Yin, and L. Qiao, High-temperature thermoelectric monolayer Bi2TeSe2 with high power factor and ultralow thermal conductivity. ACS Appl. Energy Mater. 5, 2564–2572 (2022).

    Article  CAS  Google Scholar 

  27. Y. Luo, J.-Q. Lan, T. Zhang, C.-E. Hu, X.-R. Chen, and H.-Y. Geng, Strain dependences of electronic properties, band alignments and thermal properties of bilayer WX2 (X= Se, Te). Philos. Mag. 102, 1–21 (2022). https://doi.org/10.1080/14786435.2022.2113471.

    Article  CAS  Google Scholar 

  28. A. Patel, D. Singh, Y. Sonvane, P.B. Thakor, and R. Ahuja, High thermoelectric performance in two-dimensional Janus monolayer material WS-X (X = Se and Te). ACS Appl. Mater. Interfaces 12, 46212 (2020).

    Article  CAS  Google Scholar 

  29. G. Zheng, Y. Jia, S. Gao, and S.-H. Ke, Comparative study of thermal properties of group-VA monolayers with buckled and puckered honeycomb structures. Phys. Rev. B 94, 155448 (2016).

    Article  Google Scholar 

  30. R. D’Souza and S. Mukherjee, First-principles study of the electrical and lattice thermal transport in monolayer and bilayer graphene. Phys. Rev. B 95, 085435 (2017).

    Article  Google Scholar 

  31. P.-F. Liu, T. Bo, J. Xu, W. Yin, J. Zhang, F. Wang, O. Eriksson, and B.-T. Wang, First-principles calculations of the ultralow thermal conductivity in two-dimensional group-IV selenides. Phys. Rev. B 98, 235426 (2018).

    Article  CAS  Google Scholar 

  32. H. Ying, A. Moore, J. Cui, Y. Liu, D. Li, S. Han, Y. Yao, Z. Wang, L. Wang, and S. Chen, Tailoring the thermal transport properties of monolayer hexagonal boron nitride by grain size engineering. 2D Mater. 7, 015031 (2020).

    Article  CAS  Google Scholar 

  33. H. Wang, Q. Li, H. Pan, Y. Gao, and M. Sun, Comparative investigation of the mechanical, electrical and thermal transport properties in graphene-like C3B and C3N. J. Appl. Phys. 126, 234302 (2019).

    Article  Google Scholar 

  34. A.K. Sibhatu, T. Teshome, O. Akin-Ojo, A. Yimam, and G.A. Asres, DFT investigation of the electronic and optical properties of hexagonal MX2/ZrXO (M = W, Mo and X = S, Se) van der Waals heterostructures for photovoltaic solar cell application. RSC Adv. 12, 30838–30845 (2022).

    Article  CAS  Google Scholar 

  35. A. Kubaib, P. Mohamed Imran, and A. Aathif Basha, Applications of the Vienna ab initio simulation package, DFT and molecular interaction studies for investigating the electrochemical stability and solvation performance of non-aqueous NaMF6 electrolytes for sodium-ion batteries. Comput. Theor. Chem. 1217, 113934 (2022).

    Article  CAS  Google Scholar 

  36. T.D. Ngo, T.P. Tran, H.D. Ngo, and T. Nagao, A simultaneous material-device optimization for plasmonic devices: a combined ab initio and electromagnetic simulation for photothermal transducers. Adv. Opt. Mater. 10, 2201320 (2022).

    Article  CAS  Google Scholar 

  37. G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  38. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  39. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  40. A. Togo and I. Tanaka, First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).

    Article  CAS  Google Scholar 

  41. P. Huang, H.Z. Huang, Y.F. Li, and H.M. Qian, An efficient and robust structural reliability analysis method with mixed variables based on hybrid conjugate gradient direction. Int. J. Numer. Methods Eng. 122, 1990–2004 (2021).

    Article  Google Scholar 

  42. S. Saini, A. Shrivastava, and S. Singh, An optimum thermoelectric figure of merit using Ge2Se2 monolayer: an ab-initio approach. Physica E 138, 115060 (2022).

    Article  CAS  Google Scholar 

  43. X. Zheng, C.Y. Zhao, and X. Gu, Thermal conductivity of MoS2/MoSe2 heterostructures: the role of lattice mismatch, interlayer rotation and species intermixing. Int. J. Heat Mass Transf. 143, 118583 (2019).

    Article  CAS  Google Scholar 

  44. B. Wang, X. Yan, H. Yan, and Y. Cai, Strong reduction of thermal conductivity of WSe2 with introduction of atomic defects. Nanotechnology 33, 275706 (2022).

    Article  Google Scholar 

  45. X. Nie, J. Xue, L. Zhao, S. Deng, and H. Xiong, Tunning lattice thermal conductivity of bilayer and trilayer molybdenum disulfide thermoelectric materials through twist angles. Int. J. Heat Mass Transf. 194, 123005 (2022).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Ding.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Z., Zhang, H., Chen, X. et al. First-Principles Study of Lattice Thermal Conductivity in Janus MoSSe Bilayers with Different Stacking Modes. J. Electron. Mater. 52, 2458–2465 (2023). https://doi.org/10.1007/s11664-022-10199-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10199-4

Keywords

Navigation