Skip to main content

An Introductory View About Supercapacitors

  • Chapter
  • First Online:
Functionalized Nanomaterials Based Supercapacitor

Abstract

Fossil fuels have been the primary source of energy for hundreds of years. With growing energy demands, this source not only depleting but also contributing to various environmental problems that have a serious impact on the health of common people. Consequently, researchers all over the world have shifted toward a renewable source of energy like sunlight, wind, and waste heat for generating energy without emitting harmful substances (CO2) into the environment in order to account for all the current issues. Further, without having efficient energy storage systems, harvesting energy from such sources will not be enough to fix the issue. Due to their high energy efficiency and potential for sustainable power generation, technology and materials for electrochemical energy storage have attracted a great attention in the field of energy storage. Supercapacitors are the most appealing alternative to batteries and fuel cells because of their mechanism, which takes advantage of traditional capacitors and batteries as well as bridges the energy gap between them. Owing to various advantageous properties such as high power density, high rate capability, long-lasting and stable cyclic performance, fast charging-discharging ability, and environmental friendliness, supercapacitors have been used in significant energy storage platforms such as electronic communications, aerospace, and electric transportation. Electric double-layer capacitance (EDLC) and pseudocapacitance are the two charge storage processes used by supercapacitors. In the pseudocapacitive process, a faradaic redox reaction takes place, whereas, in the EDLC, a double layer of charge forms at the electrode–electrolyte interface. Supercapacitors are utilized in many applications and have been theoretically proven to be a source of sustainable energy storage, but their performance still has to be improved in order to keep up with the growing energy demands of society today. The main aim of this chapter is to provide an introductory idea about various aspects of supercapacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Huskinson B, Marshak MP, Suh C, Er S, Gerhardt MR, Galvin CJ, Chen X, Aspuru-Guzik A, Gordon RG, Aziz MJ (2014) A metal-free organic–inorganic aqueous flow battery. Nature 505(7482):195–198

    Article  Google Scholar 

  2. Verma S, Khosla A, Arya S (2020) Performance of electrochemically synthesized nickel-zinc and nickel-iron (Ni–Zn//Ni–Fe) nanowires as battery type supercapacitor. J Electrochem Soc 167(12):120527

    Article  Google Scholar 

  3. Verma S, Padha B, Singh A, Khajuria S, Sharma A, Mahajan P, Singh B, Arya S (2021) Sol-gel synthesized carbon nanoparticles as supercapacitor electrodes with ultralong cycling stability. Fuller Nanotub Carbon Nanostruct 29(12):1045–1052

    Article  Google Scholar 

  4. Cai X, Peng M, Yu X, Fu Y, Zou D (2014) Flexible planar/fiber-architectured supercapacitors for wearable energy storage. J Mater Chem C 2(7):1184–1200

    Article  Google Scholar 

  5. Verma S, Arya S, Gupta V, Mahajan S, Furukawa H, Khosla A (2021) Performance analysis, challenges and future perspectives of nickel based nanostructured electrodes for electrochemical supercapacitors. J Market Res 11:564–599

    Google Scholar 

  6. Tarascon JM, Armand M (2011) Issues and challenges facing rechargeable lithium batteries. In: Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, pp 171–179

    Google Scholar 

  7. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Energy Environ Sci 4(9):3243–3262

    Article  Google Scholar 

  8. Manthiram A (2011) Materials challenges and opportunities of lithium ion batteries. J Phys Chem Lett 2(3):176–184

    Article  Google Scholar 

  9. Vlad A, Singh N, Rolland J, Melinte S, Ajayan PM, Gohy JF (2014) Hybrid supercapacitor-battery materials for fast electrochemical charge storage. Sci Rep 4(1):1–7

    Article  Google Scholar 

  10. Tie D, Huang S, Wang J, Ma J, Zhang J, Zhao Y (2019) Hybrid energy storage devices: advanced electrode materials and matching principles. Energy Storage Mater 21:22–40

    Article  Google Scholar 

  11. Pandolfo T, Ruiz V, Sivakkumar S, Nerkar J (2013) General properties of electrochemical capacitors. In: Supercapacitors: materials, systems, and applications, pp 69–109

    Google Scholar 

  12. Simon P, Taberna PL, Béguin F (2013) Electrical double-layer capacitors and carbons for EDLCs. Edited by Francois Béguin and Elzbieta Fr şackowiak

    Google Scholar 

  13. Lv Y, Huang S, Zhao Y (2019) NBF Tridoped 3D hierarchical porous graphitized carbon derived from chitosan for high performance supercapacitors. Sci Adv Mater 11(3):418–424

    Article  Google Scholar 

  14. Yao F, Pham DT, Lee YH (2015) Carbon-based materials for lithium-ion batteries, electrochemical capacitors, and their hybrid devices. Chemsuschem 8(14):2284–2311

    Article  Google Scholar 

  15. Zuo W, Li R, Zhou C, Li Y, Xia J, Liu J (2017) Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv Sci 4(7):1600539

    Article  Google Scholar 

  16. Wang Y, Song Y, Xia Y (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev 45(21):5925–5950

    Article  Google Scholar 

  17. Díaz-González F, Sumper A, Gomis-Bellmunt O, Villafáfila-Robles R (2012) A review of energy storage technologies for wind power applications. Renew Sustain Energy Rev 16(4):2154–2171

    Article  Google Scholar 

  18. Wu NL (2002) Nanocrystalline oxide supercapacitors. Mater Chem Phys 75(1–3):6–11

    Article  Google Scholar 

  19. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531

    Article  Google Scholar 

  20. Rajagopalan B, Chung JS (2014) Reduced chemically modified graphene oxide for supercapacitor electrode. Nanosc Res Lett 9(1):1–10

    Article  Google Scholar 

  21. González A, Goikolea E, Barrena JA, Mysyk R (2016) Review on supercapacitors: technologies and materials. Renew Sustain Energy Rev 58:1189–1206

    Article  Google Scholar 

  22. Iro ZS, Subramani C, Dash SS (2016) A brief review on electrode materials for supercapacitor. Int J Electrochem Sci 11(12):10628–10643

    Article  Google Scholar 

  23. Libich J, Máca J, Vondrák J, Čech O, Sedlaříková M (2018) Supercapacitors: properties and applications. J Energy Storage 17:224–227

    Article  Google Scholar 

  24. Halper MS, Ellenbogen JC (2006) Supercapacitors: a brief overview. The MITRE Corporation, McLean, Virginia, USA, p 1

    Google Scholar 

  25. Schneuwly A, Gallay R (2000) Properties and applications of supercapacitors from the state-of-the-art to future trends. In: Proceeding PCIM, vol 2000. Citeseer

    Google Scholar 

  26. Korkmaz S, Kariper İA (2020) Graphene and graphene oxide based aerogels: synthesis, characteristics and supercapacitor applications. J Energy Storage 27:101038

    Article  Google Scholar 

  27. Ambare RC, Mane RS, Lokhande BJ (2016) A review on electrochemical supercapacitors of composite-metal-oxide nanostructures. Int J Adv Res 4:1943–1975

    Google Scholar 

  28. Grbović PJ, Delarue P, Le Moigne P (2012) Interface converters for ultra-capacitor applications in power conversion systems. In: 2012 15th international power electronics and motion control conference (EPE/PEMC). IEEE, pp LS7d-1

    Google Scholar 

  29. Jayalakshmi M, Balasubramanian K (2008) Simple capacitors to supercapacitors-an overview. Int J Electrochem Sci 3(11):1196–1217

    Article  Google Scholar 

  30. Maxwell (2015) Top 5 markets for Ultracapacitor technology

    Google Scholar 

  31. Kiamahalleh MV, Zein SHS, Najafpour G, Sata SA, Buniran S (2012) Multiwalled carbon nanotubes based nanocomposites for supercapacitors: a review of electrode materials. Nano 7(02):1230002

    Google Scholar 

  32. Choi H, Yoon H (2015) Nanostructured electrode materials for electrochemical capacitor applications. Nanomaterials 5(2):906–936

    Article  Google Scholar 

  33. Simon P, Gogotsi Y (2010) Materials for electrochemical capacitors. Nanosci Technol: Collect Rev Nat J, 320–329

    Google Scholar 

  34. Mohapatra S, Acharya A, Roy GS (2012) The role of nanomaterial for the design of supercapacitor. Lat Am J Phys Educ 6(3):380–384

    Google Scholar 

  35. Chen SM, Ramachandran R, Mani V, Saraswathi R (2014) Recent advancements in electrode materials for the high-performance electrochemical supercapacitors: a review. Int J Electrochem Sci 9(8):4072–4085

    Article  Google Scholar 

  36. Chen T, Dai L (2013) Carbon nanomaterials for high-performance supercapacitors. Mater Today 16(7–8):272–280

    Article  Google Scholar 

  37. Burke A, Liu Z, Zhao H (2014) Present and future applications of supercapacitors in electric and hybrid vehicles. In: 2014 IEEE international electric vehicle conference (IEVC). IEEE, pp 1–8

    Google Scholar 

  38. Lee SW, Gallant BM, Byon HR, Hammond PT, Shao-Horn Y (2011) Nanostructured carbon-based electrodes: bridging the gap between thin-film lithium-ion batteries and electrochemical capacitors. Energy Environ Sci 4(6):1972–1985

    Article  Google Scholar 

  39. Shao Y, El-Kady MF, Sun J, Li Y, Zhang Q, Zhu M, Wang H, Dunn B, Kaner RB (2018) Design and mechanisms of asymmetric supercapacitors. Chem Rev 118(18):9233–9280

    Article  Google Scholar 

  40. Naoi K, Simon P (2008) New materials and new configurations for advanced electrochemical capacitors. Electrochem Soc Interface 17(1):34

    Article  Google Scholar 

  41. Pushparaj VL, Sreekala S, Nalamasu O, Ajayan PM (2010) Flexible energy storage devices using nanomaterials. In: Semiconductor nanomaterials for flexible technologies. William Andrew Publishing, pp 227–245

    Google Scholar 

  42. Li X, Wei B (2013) Supercapacitors based on nanostructured carbon. Nano Energy 2(2):159–173

    Article  Google Scholar 

  43. Wang K, Wu H, Meng Y, Wei Z (2014) Conducting polymer nanowire arrays for high performance supercapacitors. Small 10(1):14–31

    Article  Google Scholar 

  44. Chee WK, Lim HN, Huang NM (2015) Electrochemical properties of free-standing polypyrrole/graphene oxide/zinc oxide flexible supercapacitor. Int J Energy Res 39(1):111–119

    Article  Google Scholar 

  45. Cai JJ, Kong LB, Zhang J, Luo YC, Kang L (2010) A novel polyaniline/mesoporous carbon nano-composite electrode for asymmetric supercapacitor. Chin Chem Lett 21(12):1509–1512

    Article  Google Scholar 

  46. Lee SY, Kim JI, Park SJ (2014) Activated carbon nanotubes/polyaniline composites as supercapacitor electrodes. Energy 78:298–303

    Article  Google Scholar 

  47. Fei H, Yang C, Bao H, Wang G (2014) Flexible all-solid-state supercapacitors based on graphene/carbon black nanoparticle film electrodes and cross-linked poly (vinyl alcohol)–H2SO4 porous gel electrolytes. J Power Sour 266:488–495

    Article  Google Scholar 

  48. Shi C, Zhao Q, Li H, Liao ZM, Yu D (2014) Low cost and flexible mesh-based supercapacitors for promising large-area flexible/wearable energy storage. Nano Energy 6:82–91

    Article  Google Scholar 

  49. Tehrani Z, Thomas DJ, Korochkina T, Phillips CO, Lupo D, Lehtimäki S, O’mahony J, Gethin DT (2017) Large-area printed supercapacitor technology for low-cost domestic green energy storage. Energy 118:1313–1321

    Google Scholar 

  50. Yang H, Kannappan S, Pandian AS, Jang JH, Lee YS, Lu W (2017) Graphene supercapacitor with both high power and energy density. Nanotechnology 28(44):445401

    Article  Google Scholar 

  51. Bo Z, Wen Z, Kim H, Lu G, Yu K, Chen J (2012) One-step fabrication and capacitive behavior of electrochemical double layer capacitor electrodes using vertically-oriented graphene directly grown on metal. Carbon 50(12):4379–4387

    Article  Google Scholar 

  52. Singh AP, Tiwari NK, Karandikar PB, Dubey A (2015) Effect of electrode shape on the parameters of supercapacitor. In: 2015 international conference on industrial instrumentation and control (ICIC). IEEE, pp 669–673

    Google Scholar 

  53. Frackowiak E, Beguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39(6):937–950

    Article  Google Scholar 

  54. Niu C, Sichel EK, Hoch R, Moy D, Tennent H (1997) High power electrochemical capacitors based on carbon nanotube electrodes. Appl Phys Lett 70(11):1480–1482

    Article  Google Scholar 

  55. Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W (2011) Nanostructured materials for advanced energy conversion and storage devices. In: Materials for sustainable energy: a collection of peer-reviewed research. Nature Publishing Group, pp 148–159

    Google Scholar 

  56. Kötz R, Carlen MJEA (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45(15–16):2483–2498

    Article  Google Scholar 

  57. Jogade SM, Joshi PS, Jamadar BN, Sutrave DS (2011) MOCVD of cobalt oxide using co-actylacetonate as precursor: thin film deposition and study of physical properties

    Google Scholar 

  58. Lee W, Mane RS, Todkar VV, Lee S, Egorova O, Chae WS, Han SH (2007) Implication of liquid-phase deposited amorphous RuO2 electrode for electrochemical supercapacitor. Electrochem Solid-State Lett 10(9):A225

    Article  Google Scholar 

  59. Zheng JP, Jow TR (1995) A new charge storage mechanism for electrochemical capacitors. J Electrochem Soc 142(1):L6

    Article  Google Scholar 

  60. Burke A (2000) Ultracapacitors: why, how, and where is the technology. J Power Sour 91(1):37–50

    Article  Google Scholar 

  61. Xia H, Lai MO, Lu L (2011) Nanostructured manganese oxide thin films as electrode material for supercapacitors. JOM 63(1):54–59

    Article  Google Scholar 

  62. Wang GX, Zhang BL, Yu ZL, Qu MZ (2005) Manganese oxide/MWNTs composite electrodes for supercapacitors. Solid State Ionics 176(11–12):1169–1174

    Article  Google Scholar 

  63. Arbizzani C, Mastragostino M, Soavi F (2001) New trends in electrochemical supercapacitors. J Power Sour 100(1–2):164–170

    Article  Google Scholar 

  64. Zou X, Zhang S, Shi M, Kong J (2007) Remarkably enhanced capacitance of ordered polyaniline nanowires tailored by stepwise electrochemical deposition. J Solid State Electrochem 11(2):317–322

    Article  Google Scholar 

  65. Fan LZ, Maier J (2006) High-performance polypyrrole electrode materials for redox supercapacitors. Electrochem Commun 8(6):937–940

    Article  Google Scholar 

  66. Mastragostino M, Arbizzani C, Soavi F (2001) Polymer-based supercapacitors. J Power Sour 97:812–815

    Google Scholar 

  67. Zhang F, Tang J, Shinya N, Qin LC (2013) Hybrid graphene electrodes for supercapacitors of high energy density. Chem Phys Lett 584:124–129

    Article  Google Scholar 

  68. Mandal M, Ghosh D, Kalra SS, Das CK (2014) High performance supercapacitor electrode material based on flower like MoS2/reduced graphene oxide nanocomposite. Int J Lat Res Sci Technol 3:65

    Google Scholar 

  69. Yan J, Wei T, Qiao W, Fan Z, Zhang L, Li T, Zhao Q (2010) A high-performance carbon derived from polyaniline for supercapacitors. Electrochem Commun 12(10):1279–1282

    Article  Google Scholar 

  70. Yan J, Wei T, Shao B, Fan Z, Qian W, Zhang M, Wei F (2010) Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 48(2):487–493

    Article  Google Scholar 

  71. Yan J, Wei T, Fan Z, Qian W, Zhang M, Shen X, Wei F (2010) Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. J Power Sour 195(9):3041–3045

    Article  Google Scholar 

  72. Wang H, Zhou Q, Yao B, Ma H, Zhang M, Li C, Shi G (2018) Suppressing the self discharge of supercapacitors by modifying separators with an ionic polyelectrolyte. Adv Mater Interfaces 5(10):1701547

    Article  Google Scholar 

  73. Zhang X, He B, Zhao Y, Tang Q (2018) A porous ceramic membrane tailored high-temperature supercapacitor. J Power Sour 379:60–67

    Article  Google Scholar 

  74. Yang JM, Wang HZ, Yang CC (2008) Modification and characterization of semi-crystalline poly (vinyl alcohol) with interpenetrating poly (acrylic acid) by UV radiation method for alkaline solid polymer electrolytes membrane. J Membr Sci 322(1):74–80

    Article  Google Scholar 

  75. Saunier J, Alloin F, Sanchez JY, Maniguet L (2004) Plasticized microporous poly (vinylidene fluoride) separators for lithium‐ion batteries. III. Gel properties and irreversible modifications of poly (vinylidene fluoride) membranes under swelling in liquid electrolytes. J Polym Sci Part B: Polym Phys 42(12):2308–2317

    Google Scholar 

  76. Karabelli D, Lepretre JC, Alloin F, Sanchez JY (2011) Poly (vinylidene fluoride)-based macroporous separators for supercapacitors. Electrochim Acta 57:98–103

    Article  Google Scholar 

  77. Hashim MA, Sa’adu L, bin Baharuddin M, Dasuki KA (2014) Using PVA, methacrylate and Lauroyl chitosan as separator in supercapacitors. J Mater Sci Res 3(1):25

    Google Scholar 

  78. Yin Y, Yamada O, Suto Y, Mishima T, Tanaka K, Kita H, Okamoto KI (2005) Synthesis and characterization of proton-conducting copolyimides bearing pendant sulfonic acid groups. J Polym Sci Part A: Polym Chem 43(8):1545–1553

    Article  Google Scholar 

  79. Staiti P, Lufrano F (2010) Investigation of polymer electrolyte hybrid supercapacitor based on manganese oxide–carbon electrodes. Electrochim Acta 55(25):7436–7442

    Article  Google Scholar 

  80. Ahankari SS, Lasrado D, Ramesh S (2022) Advances in materials and fabrication of separators in supercapacitors. Mater Adv

    Google Scholar 

  81. Solarajan AK, Murugadoss V, Angaiah S (2017) High performance electrospunPVdF-HFP/SiO2 nanocomposite membrane electrolyte for Li-ion capacitors. J Appl Polym Sci 134(32):45177

    Article  Google Scholar 

  82. Solarajan AK, Murugadoss V, Angaiah S (2016) Montmorillonite embedded electrospunPVdF–HFP nanocomposite membrane electrolyte for Li-ion capacitors. Appl Mater Today 5:33–40

    Article  Google Scholar 

  83. Tõnurist K, Thomberg T, Jänes A, Lust E (2013) Specific performance of supercapacitors at lower temperatures based on different separator materials. J Electrochem Soc 160(3):A449

    Article  Google Scholar 

  84. Tõnurist K, Jänes A, Thomberg T, Kurig H, Lust E (2009) Influence of mesoporous separator properties on the parameters of electrical double-layer capacitor single cells. J Electrochem Soc 156(4):A334

    Article  Google Scholar 

  85. He T, Jia R, Lang X, Wu X, Wang Y (2017) Preparation and electrochemical performance of PVdF ultrafine porous fiber separator-cum-electrolyte for supercapacitor. J Electrochem Soc 164(13):E379

    Article  Google Scholar 

  86. Xie Q, Huang X, Zhang Y, Wu S, Zhao P (2018) High performance aqueous symmetric supercapacitors based on advanced carbon electrodes and hydrophilic poly (vinylidene fluoride) porous separator. Appl Surf Sci 443:412–420

    Article  Google Scholar 

  87. He T, Fu Y, Meng X, Yu X, Wang X (2018) A novel strategy for the high performance supercapacitor based on polyacrylonitrile-derived porous nanofibers as electrode and separator in ionic liquid electrolyte. Electrochim Acta 282:97–104

    Article  Google Scholar 

  88. Mastragostino M, Soavi F (2007) J Power Sour 174:89–93

    Article  Google Scholar 

  89. Szubzda B, Szmaja A, Ozimek M, Mazurkiewicz S (2014) Polymer membranes as separators for supercapacitors. Appl Phys A 117(4):1801–1809

    Article  Google Scholar 

  90. Sivaraman P, Mishra SP, Potphode DD, Thakur AP, Shashidhara K, Samui AB, Bhattacharyya AR (2015) A supercapacitor based on longitudinal unzipping of multi-walled carbon nanotubes for high temperature application. RSC Adv 5:83546–83557

    Article  Google Scholar 

  91. Na R, Huo P, Zhang X, Zhang S, Du Y, Zhu K, Lu Y, Zhang M, Luan J, Wang G (2016) A flexible solid-state supercapacitor based on a poly (aryl ether ketone)–poly (ethylene glycol) copolymer solid polymer electrolyte for high temperature applications. RSC Adv 6(69):65186–65195

    Article  Google Scholar 

  92. Pang Z, Duan J, Zhao Y, Tang Q, He B, Yu L (2018) A ceramic NiO/ZrO2 separator for high-temperature supercapacitor up to 140 °C. J Power Sour 400:126–134

    Article  Google Scholar 

  93. Zheng S, Lei W, Qin J, Wu ZS, Zhou F, Wang S, Shi X, Sun C, Chen Y, Bao X (2018) All-solid-state high-energy planar asymmetric supercapacitors based on all-in-one monolithic film using boron nitride nanosheets as separator. Energy Storage Mater 10:24–31

    Article  Google Scholar 

  94. González C, Vilatela JJ, Molina-Aldareguía JM, Lopes CS, LLorca J (2017) Structural composites for multifunctional applications: Current challenges and future trends. Progr Mater Sci 89:194–251

    Google Scholar 

  95. Acauan LH, Zhou Y, Kalfon-Cohen E, Fritz NK, Wardle BL (2019) Multifunctional nanocomposite structural separators for energy storage. Nanoscale 11(45):21964–21973

    Article  Google Scholar 

  96. Yao Q, Wang H, Wang C, Jin C, Sun Q (2018) One step construction of nitrogen–carbon derived from bradyrhizobium japonicum for supercapacitor applications with a soybean leaf as a separator. ACS Sustain Chem Eng 6(4):4695–4704

    Article  Google Scholar 

  97. Guo N, Li M, Wang Y, Sun X, Wang F, Yang R (2016) Soybean root-derived hierarchical porous carbon as electrode material for high-performance supercapacitors in ionic liquids. ACS Appl Mater Interfaces 8(49):33626–33634

    Article  Google Scholar 

  98. Jin L, Wei K, Xia Y, Liu B, Zhang K, Gao H, Chu X, Ye M, He L, Lin P (2019) Tree leaves-derived three-dimensional porous networks as separators for graphene-based supercapacitors. Mater Today Energy 14:100348

    Article  Google Scholar 

  99. Liang N, Ji Y, Zuo D, Zhang H, Xu J (2019) Improved performance of carbon-based supercapacitors with sulfonated poly (ether ether ketone)/poly (vinyl alcohol) composite membranes as separators. Polym Int 68(1):120–124

    Article  Google Scholar 

  100. Yang D, Qi L, Ma J (2002) Eggshell membrane templating of hierarchically ordered macroporous networks composed of TiO2 tubes. Adv Mater 14(21):1543–1546

    Article  Google Scholar 

  101. Taer E, Sumantre MA, Taslim R, Dahlan D, Deraman M (2014) Eggs shell membrane as natural separator for supercapacitor applications. In: Advanced materials research, vol 896. Trans Tech Publications Ltd., pp 66–69

    Google Scholar 

  102. Dahlan D, Sartika N, Namigo EL, Taer E (2015) Effect of TiO2 on duck eggshell membrane as separators in supercapacitor applications. In: Materials science forum, vol 827. Trans Tech Publications Ltd., pp 151–155

    Google Scholar 

  103. Yu H, Tang Q, Wu J, Lin Y, Fan L, Huang M, Lin J, Li Y, Yu F (2012) Using eggshell membrane as a separator in supercapacitor. J Power Sour 206:463–468

    Article  Google Scholar 

  104. Zhang Y, He J, Gao Z, Li X (2019) Converting eggs to flexible, all-solid supercapacitors. Nano Energy 65:104045

    Article  Google Scholar 

  105. Yang P, Xie J, Zhong C (2018) Biowaste-derived three-dimensional porous network carbon and bioseparator for high-performance asymmetric supercapacitor. ACS Appl Energy Mater 1(2):616–622

    Article  Google Scholar 

  106. Zhao Y, Huang S, Xia M, Rehman S, Mu S, Kou Z, Zhang Z, Chen Z, Gao F, Hou Y (2016) NPO co-doped high performance 3D graphene prepared through red phosphorous-assisted “cutting-thin” technique: a universal synthesis and multifunctional applications. Nano Energy 28:346–355

    Article  Google Scholar 

  107. Cameron CG, Fitzsimmons SM (2008) Supercapacitor separators and polypyrrole composites, Defence R&D Canada-Atlantic. Technical memorandum, DRDC Atlantic TM 2008–219

    Google Scholar 

  108. Hu L, Chen W, Xie X, Liu N, Yang Y, Wu H, Yao Y, Pasta M, Alshareef HN, Cui Y (2011) Symmetrical MnO2–carbon nanotube–textile nanostructures for wearable pseudocapacitors with high mass loading. ACS Nano 5(11):8904–8913

    Article  Google Scholar 

  109. Koga H, Tonomura H, Nogi M, Suganuma K, Nishina Y (2016) Fast, scalable, and eco-friendly fabrication of an energy storage paper electrode. Green Chem 18(4):1117–1124

    Article  Google Scholar 

  110. Tammela P, Olsson H, Strømme M, Nyholm L (2014) The influence of electrode and separator thickness on the cell resistance of symmetric cellulose–polypyrrole-based electric energy storage devices. J Power Sour 272:468–475

    Article  Google Scholar 

  111. Hu L, Wu H, Cui Y (2010) Printed energy storage devices by integration of electrodes and separators into single sheets of paper. Appl Phys Lett 96(18):183502

    Article  Google Scholar 

  112. Bittner AM, Zhu M, Yang Y, Waibel HF, Konuma M, Starke U, Weber CJ (2012) Ageing of electrochemical double layer capacitors. J Power Sour 203:262–273

    Article  Google Scholar 

  113. Kang YJ, Chung H, Han CH, Kim W (2012) All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes. Nanotechnology 23(6):065401

    Article  Google Scholar 

  114. Bélanger D, Brousse T, Long J (2008) Manganese oxides: battery materials make the leap to electrochemical capacitors. Electrochem Soc Interface 17(1):49

    Article  Google Scholar 

  115. Shi S, Xu C, Yang C, Li J, Du H, Li B, Kang F (2013) Flexible supercapacitors. Particuology 11(4):371–377

    Article  Google Scholar 

  116. Jagadale AD, Jamadade VS, Pusawale SN, Lokhande CD (2012) Effect of scan rate on the morphology of potentiodynamically deposited β-Co (OH)2 and corresponding supercapacitive performance. Electrochim Acta 78:92–97

    Article  Google Scholar 

  117. Lytle JC, Wallace JM, Sassin MB, Barrow AJ, Long JW, Dysart JL, Renninger CH, Saunders MP, Brandell NL, Rolison DR (2011) The right kind of interior for multifunctional electrode architectures: carbon nanofoam papers with aperiodic submicrometre pore networks interconnected in 3D. Energy Environ Sci 4(5):1913–1925

    Article  Google Scholar 

  118. Kim DH, Kim YS, Wu J, Liu Z, Song J, Kim HS, Huang YY, Hwang KC, Rogers JA (2009) Ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper. Adv Mater 21(36):3703–3707

    Article  Google Scholar 

  119. Hu L, Choi JW, Yang Y, Jeong S, La Mantia F, Cui LF, Cui Y (2009) Highly conductive paper for energy-storage devices. Proc Natl Acad Sci 106(51):21490–21494

    Article  Google Scholar 

  120. Avila AG, Hinestroza JP (2008) Tough cotton. Nat Nanotechnol 3(8):458–459

    Article  Google Scholar 

  121. Gu JF, Gorgutsa S, Skorobogatiy M (2010) Soft capacitor fibers using conductive polymers for electronic textiles. Smart Mater Struct 19(11):115006

    Article  Google Scholar 

  122. Chen W, Rakhi RB, Hu L, Xie X, Cui Y, Alshareef HN (2011) High-performance nanostructured supercapacitors on a sponge. Nano Lett 11(12):5165–5172

    Article  Google Scholar 

  123. Dubal DP, Kim JG, Kim Y, Holze R, Lokhande CD, Kim WB (2014) Supercapacitors based on flexible substrates: an overview. Energ Technol 2(4):325–341

    Article  Google Scholar 

  124. Zhao Y, Ran W, He J, Song Y, Zhang C, Xiong DB, Gao F, Wu J, Xia Y (2015) Oxygen-rich hierarchical porous carbon derived from artemia cyst shells with superior electrochemical performance. ACS Appl Mater Interfaces 7(2):1132–1139

    Article  Google Scholar 

  125. Zhao Y, Zhang Z, Ren Y, Ran W, Chen X, Wu J, Gao F (2015) Vapor deposition polymerization of aniline on 3D hierarchical porous carbon with enhanced cycling stability as supercapacitor electrode. J Power Sour 286:1–9

    Article  Google Scholar 

  126. Xu Q, Wei C, Fan L, Rao W, Xu W, Liang H, Xu J (2018) Polypyrrole/titania-coated cotton fabrics for flexible supercapacitor electrodes. Appl Surf Sci 460:84–91

    Article  Google Scholar 

  127. Choi KH, Cho SJ, Chun SJ, Yoo JT, Lee CK, Kim W, Wu Q, Park SB, Choi DH, Lee SY, Lee SY (2014) Heterolayered, one-dimensional nanobuilding block mat batteries. Nano Lett 14(10):5677–5686

    Article  Google Scholar 

  128. Dong L, Xu C, Li Y, Huang ZH, Kang F, Yang QH, Zhao X (2016) Flexible electrodes and supercapacitors for wearable energy storage: a review by category. J Mater Chem A 4(13):4659–4685

    Article  Google Scholar 

  129. Chen Z, Xiong DB, Zhang X, Ma H, Xia M, Zhao Y (2016) Construction of a novel hierarchical structured NH4–Co–Ni phosphate toward an ultrastable aqueous hybrid capacitor. Nanoscale 8(12):6636–6645

    Article  Google Scholar 

  130. Wang F, Wang X, Chang Z, Wu X, Liu X, Fu L, Zhu Y, Wu Y, Huang W (2015) A quasi-solid-state sodium-ion capacitor with high energy density. Adv Mater 27(43):6962–6968

    Article  Google Scholar 

  131. Lv Z, Li W, Yang L, Loh XJ, Chen X (2019) Custom-made electrochemical energy storage devices. ACS Energy Lett 4(2):606–614

    Article  Google Scholar 

  132. Yin L, Huang X, Xu H, Zhang Y, Lam J, Cheng J, Rogers JA (2014) Materials, designs, and operational characteristics for fully biodegradable primary batteries. Adv Mater 26(23):3879–3884

    Article  Google Scholar 

  133. Wang X, Xu W, Chatterjee P, Lv C, Popovich J, Song Z, Dai L, Kalani MYS, Haydel SE, Jiang H (2016) Food-materials-based edible supercapacitors. Adv Mater Technol 1(3):1600059

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Arya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kour, M., Verma, S., Padha, B., Mahajan, P., Ahmed, A., Arya, S. (2024). An Introductory View About Supercapacitors. In: Hussain, C.M., Ahamed, M.B. (eds) Functionalized Nanomaterials Based Supercapacitor. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-99-3021-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3021-0_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3020-3

  • Online ISBN: 978-981-99-3021-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics