Skip to main content

Advertisement

Log in

Investigations of Substrate and Patch Materials for Sub-Terahertz Wireless Applications Scenario

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The appropriate choice of patch and substrate materials has great significance in the performance of the terahertz (THz) microstrip patch antenna. The resonant frequency is dependent on various factors such as dimensions of the patch, substrate thickness, and permittivity. In this work, initially, a microstrip antenna with a silicon substrate was analyzed for different patch materials such as copper, graphene, and gold with a central operating frequency of 300 GHz. The result reveals that the graphene patch has a maximum bandwidth of 1.49 GHz and ideal radiation efficiency. Then, adopting graphene as a patch material, the performance of the antenna is analyzed on the basis of return loss, voltage standing wave ratio (VSWR), radiation efficiency, bandwidth, and gain with different substrate materials such as quartz, silicon, silicon dioxide, and silicon nitrate. The results show that quartz has an optimal performance by generating higher bandwidth and radiation efficiency when compared to other chosen substrate materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of Data and Material

Data sharing not applicable to this article as no datasets were generated during the current study.

Code Availability

Software Application.

References

  1. H. Elayan, O. Amin, B. Shihada, R.M. Shubair, M.-S. Alouini, IEEE Open J. Commun. Soc. 1, 1 (2020)

    Article  Google Scholar 

  2. M.K. Azizi, M.A. Ksiksi, H. Ajlani, A. Gharsallah, Prog. Electromagn. Res. Lett. 71, 69 (2017)

    Article  Google Scholar 

  3. H. Tao, W.J. Padilla, X. Zhang, R.D. Averitt, IEEE. J. Sel. Top. Quantum Electron. 17, 92 (2011)

  4. S. Z. Sajal, B. D. Braaten, V. R. Marinov, in (2015) IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting 2415.

  5. S. Dash, A. Patnaik, Microw. Opt. Technol. Lett. 60, 1183 (2018)

    Article  Google Scholar 

  6. K. Geim, Science 324, 1530 (2009)

    Article  CAS  Google Scholar 

  7. C.L. Peterson, IEEE Technol. Soc. Mag. 23, 9 (2004)

    Article  Google Scholar 

  8. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  CAS  Google Scholar 

  9. J. S. Gomez-Diaz and J. Perruisseau-Carrier, in (2012) 2012 International Symposium on Antennas and Propagation , 239.

  10. S.M. Shamim, M.S. Uddin, M.R. Hasan, M. Samad, J. Comput. Electron. 20, 604 (2020)

    Article  Google Scholar 

  11. Marti Ignacio Llatser, C. Kremers, A. Cabellos-Aparicio, J. M. Jornet, Alarcon Eduard, D. N. Chigrin, and D. N. Chigrin,in (2011) AIP Conference Proceedings ,144.

  12. Llatser, C. Kremers, D. N. Chigrin, J. M. Jornet, M. C. Lemme, A. Cabellos-Aparicio, and E. Alarcon, in 2012 6th European Conference on Antennas and Propagation (2012),194.

  13. H.S. Skulason, H.V. Nguyen, A. Guermoune, V. Sridharan, M. Siaj, C. Caloz, T. Szkopek, Appl. Phys. Lett. 99, 153504 (2011)

    Article  Google Scholar 

  14. S. Anand, D. Sriram Kumar, R. J. Wu, and M. Chavali, 2014 Optik. 125, 5546 .

  15. M.T. Katsounaros, H.M. Cole, W.I. Tuncer, Milne, and Y. Hao, Appl. Phys. Lett. 102, 233104 (2013)

  16. N. Jain, T. Bansal, C. Durcan, B. Yu, IEEE Electron Device Lett. 33, 925 (2012)

    Article  CAS  Google Scholar 

  17. R. Bala, A. Marwaha, Eng. Sci. Technol. An Int. J 19, 531 (2016)

    Article  Google Scholar 

  18. M. Tamagnone, J.S. Gómez-Díaz, J.R. Mosig, J. Perruisseau-Carrier, J. Appl. Phys. 112, 114915 (2012)

    Article  Google Scholar 

  19. M.A. Khan, T.A. Shaem, M.A. Alim, Optik. 202, 163700 (2020)

    Article  CAS  Google Scholar 

  20. C. Llatser, A. Kremers, J.M. Cabellos-Aparicio, E. Alarcón. Jornet, D.N. Chigrin, Photon. Nanostruct. Fundam Appl. 10, 353 (2012)

    Article  Google Scholar 

  21. R.K. Kushwaha, P. Karuppanan, Aust (J. Electr. Electron, Eng, 2021), p. 1

    Google Scholar 

  22. Z. Popovic, E.N. Grossman, IEEE Trans. Terahertz Sci. Technol. 1, 133 (2011)

    Article  Google Scholar 

  23. T.J. Reck, C. Jung-Kubiak, J. Gill, G. Chattopadhyay, IEEE Trans. Terahertz Sci. Technol. 4, 33 (2014)

    Article  Google Scholar 

  24. V. Raisanen, J. Ala-Laurinaho, J. Hakli, A. Karttunen, T. Koskinen, A. Lonnqvist, J. Mallat, E. Noponen, A. Tamminen, M. Vaaja, and V. Viikari, in (2007) 19th International Conference on Applied Electromagnetics and Communications, 1.

Download references

Funding

The authors received no financial support for the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selvakumar George.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

George, S., Vijayakumar, N. Investigations of Substrate and Patch Materials for Sub-Terahertz Wireless Applications Scenario. J. Electron. Mater. 51, 5065–5073 (2022). https://doi.org/10.1007/s11664-022-09734-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09734-0

Keywords

Navigation