Skip to main content

Study on Substrate Dependency of Graphene-Based Patch Antennas for Gigahertz and Terahertz Applications

  • Conference paper
  • First Online:
Emerging Technologies for Smart Cities

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 765))

  • 437 Accesses

Abstract

Graphene is a thin sheet of carbon atoms in which carbon atoms are arranged in a hexagonal honeycomb lattice structure. It has very high electrical conductivity. Properties like high electron mobility and ability to support Surface Plasmon Polariton (SPP) waves make graphene suitable for THz communication. In this paper, antennas are designed and investigated with graphene patch at different substrates employing finite element method-based High Frequency Simulation Software (HFSS). Performance of the antennas are investigated for five different substrate materials such as FR-4, Bakelite, Rogers R04003, RT Duroid 6010 and Taconic TLC. Further, the performances are examined on the basis of return loss, voltage standing wave ratio (VSWR), gain, directivity and bandwidth of the graphene-based patch antennas at Gigahertz (GHz) and Terahertz (THz) range. Finally, it is proved that effect of substrate material is retained while linear scaling graphene-based patch antenna from GHz frequency range to THz frequency range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adnan S, Goni O (2015) Graphene nanoribbon based antenna for terahertz band communication. In: Proceedings of international conference on electrical information and communication technology (EICT 2015)

    Google Scholar 

  2. Sharma A, Singh G (2009) Rectangular microstrip patch antenna design at THz frequency for short distance wireless communication systems. J Infrared Millim Terahertz Waves 30(1):1–7

    Article  Google Scholar 

  3. Llatser KC, Albert CA, Jornet JM, Alarcon E, Chigrin DN (2012) Graphene-based nano-patch antenna for terahertz radiation. Photon Nanostruct-Fund Appl 10(4):353–358

    Google Scholar 

  4. Anand S, Sriram Kumar D, Wu RJ, Chavali M (2014) Analysis and design of optically transparent antenna on photonic band gap structures. Optik 125:2835–2839

    Google Scholar 

  5. Llatser KC, Chigrin DN, Josep JM, Lemme MC, Albert C-A (2012) Alarcon Eduard: characterization of graphene-based nano-antennas in the terahertzband. In: 6th European conference on IEEE

    Google Scholar 

  6. Llatser CK, Cabellos-Aparicio A, Jornet J, Alarcon E, Chigrin D (2011) Scattering of terahertz radiation on a graphene-based nano-antenna. In: AIP Conference proceeding, 4th international conference on theoretical and nanophotonics, Germany, pp 144–147

    Google Scholar 

  7. Llatser I, Kremers C, Chigrin D, Jornet J, Lemme M, Cabellos-Aparicio A et al (2012) Characterization of graphene-based nano-antennas in the terahertz band. In: 6th European conference on antennas and propagation (EUCAP), pp. 194–198

    Google Scholar 

  8. Anand S, Sriram Kumar D, Jang Wu R, Chavali M (2014) Graphene nanoribbon based terahertz antenna on polyimide substrate. Optik 125:5546–5549

    Google Scholar 

  9. Zhu B, Chen Y, Deng K, Hu W, Yao ZS (2009) Terahertz science and technology and applications. In: PIERS Proceedings, Beijing, China

    Google Scholar 

  10. Zhou B, Yakup F, Du L, Dai JL (2010) Volakis: Polymer–carbon nanotube sheets for conformal load bearing antennas. IEEE Trans Antennas Propag 58:2169–2175

    Article  Google Scholar 

  11. Balanis CA (2012) Antenna theory: analysis and design. Wiley

    Google Scholar 

  12. Llatser C, Kremers A, Cabellos Aparicio JM, Jornet EA, Chigrin DN (2011) Scattering of terahertz radiation on a graphene-based nano-antenna. In: AIP Conference proceedings, vol 1398, pp 144–146

    Google Scholar 

  13. Sharma A, Singh G (2009) Rectangular microstrip patch antenna design at THz frequency for short distance wireless communication systems. J Infrared, Millim Terahertz Waves, Springer 30(1):1–7

    Article  Google Scholar 

  14. Kumar A, Marwaha S, Marwaha A, Kalsi NS (2010) Magnetic field analysis of induction motor for optimal cooling duct design. Simul Model Pract Theory, Elsevier Science 18(2):157–164

    Article  Google Scholar 

  15. Bhattacharyya K, Goswami S, Sarmah K, Baruah S (2019) A linear-scaling technique for designing a THz antenna from a GHz microstrip antenna or slot antenna. Optik-Int J Light Electron Opt, Elsevier 199:1–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaustubh Bhattacharyya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khanam, D., Bhattacharyya, K., Sarma, K.K., Baruah, S. (2021). Study on Substrate Dependency of Graphene-Based Patch Antennas for Gigahertz and Terahertz Applications. In: Bora, P.K., Nandi, S., Laskar, S. (eds) Emerging Technologies for Smart Cities. Lecture Notes in Electrical Engineering, vol 765. Springer, Singapore. https://doi.org/10.1007/978-981-16-1550-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1550-4_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1549-8

  • Online ISBN: 978-981-16-1550-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics