Skip to main content
Log in

Performance enhancements in poly(vinylidene fluoride)-based piezoelectric films prepared by the extrusion-casting process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The extrusion-casting process can realize large-area and continuous preparation of polymer-based films. In this paper, five different types of polyvinylidene fluoride (PVDF)-based piezoelectric films: PVDF, PVDF/PZT, PVDF/PZT@105, PVDF/PZT/BNNS and PVDF/PZT@105/BNNS were prepared by the extrusion-casting process. The mechanical, dielectric, thermal conductivity and piezoelectric properties were studied. It is found that PZT particles can well improve the dielectric performance and also the mechanical stability under variable temperature conditions. PZT powders modified by titanate coupling reagent (UP-105) can further improve the performance of the PVDF/PZT@105 films by improving the combination and dispersion of organic and inorganic phases. The addition of boron nitride nanosheets (BNNS) can improve the thermal conductivity of the films and the breakdown strength. The piezoelectric coefficient (d33) of PVDF/PZT@105/BNNS composite film can reach 21pC/N, compared with the neat PVDF film (4pC/N) and PZT/PVDF (9pC/N) film realizing great improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Yan, M. Liu, Y.G. Jeong, W. Kang, L. Li, Y. Zhao, N. Deng, B. Cheng, G. Yang, Performance enhancements in poly(vinylidene fluoride)-based piezoelectric nanogenerators for efficient energy harvesting. Nano Energy 56, 662–692 (2019)

    Article  CAS  Google Scholar 

  2. K.Y. Cho, H. Park, H.-J. Kim, X.H. Do, C.M. Koo, S.S. Hwang, H.G. Yoon, K.-Y. Baek, Highly enhanced electromechanical properties of PVDF-TrFE/SWCNT nanocomposites using an efficient polymer compatibilizer. Compos. Sci. Technol. 157, 21–29 (2018)

    Article  CAS  Google Scholar 

  3. K.S. Ramadan, D. Sameoto, S. Evoy, A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater. Struct. 23(3), 033001 (2014)

    Article  CAS  Google Scholar 

  4. L. Jin, S. Ma, W. Deng, C. Yan, T. Yang, X. Chu, G. Tian, D. Xiong, J. Lu, W. Yang, Polarization-free high-crystallization β-PVDF piezoelectric nanogenerator toward self-powered 3D acceleration sensor. Nano Energy 50, 632–638 (2018)

    Article  CAS  Google Scholar 

  5. X. Huang, B. Sun, Y. Zhu, S. Li, P. Jiang, High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications. Prog. Mater Sci. 100, 187–225 (2019)

    Article  CAS  Google Scholar 

  6. R. Shankar, T.K. Ghosh, R.J. Spontak, Dielectric elastomers as next-generation polymeric actuators. Soft Matter 3(9), 1116–1129 (2007)

    Article  CAS  Google Scholar 

  7. V.F. Cardoso, T. Knoll, T. Velten, L. Rebouta, P.M. Mendes, S. Lanceros-Méndez, G. Minas, Polymer-based acoustic streaming for improving mixing and reaction times in microfluidic applications. RSC Adv. 4(9), 4292–4300 (2014)

    Article  CAS  Google Scholar 

  8. S.O. Catarino, L.R. Silva, P.M. Mendes, J.M. Miranda, S. Lanceros-Mendez, G. Minas, Piezoelectric actuators for acoustic mixing in microfluidic devices-Numerical prediction and experimental validation of heat and mass transport. Sens. Actuators B 205, 206–214 (2014)

    Article  CAS  Google Scholar 

  9. C. Ribeiro, C.M. Costa, D.M. Correia, J. Nunes-Pereira, J. Oliveira, P. Martins, R. Goncalves, V.F. Cardoso, S. Lanceros-Mendez, Electroactive poly(vinylidene fluoride)-based structures for advanced applications. Nat Protoc. 13(4), 681–704 (2018)

    Article  CAS  Google Scholar 

  10. J.-H.Bae, S.-H. Chang, PVDF-based ferroelectric polymers and dielectric elastomers for sensor and actuator applications: a review. Funct. Compos. Struct. 1, 012003 (2019).

  11. W. Xia, Z. Zhang, PVDF-based dielectric polymers and their applications in electronic materials. IET Nanodielectr. 1(1), 17–31 (2018)

    Article  Google Scholar 

  12. F. Liu, N.A. Hashim, Y. Liu, M.R.M. Abed, K. Li, Progress in the production and modification of PVDF membranes. J. Membr. Sci. 375(1–2), 1–27 (2011)

    Article  CAS  Google Scholar 

  13. J. Chen, Y. Wang, Q. Yuan, X. Xu, Y. Niu, Q. Wang, H. Wang, Multilayered ferroelectric polymer films incorporating low-dielectric-constant components for concurrent enhancement of energy density and charge–discharge efficiency. Nano Energy 54, 288–296 (2018)

    Article  CAS  Google Scholar 

  14. J. Fu, Y. Hou, X. Gao, M. Zheng, M. Zhu, Highly durable piezoelectric energy harvester based on a PVDF flexible nanocomposite filled with oriented BaTi2O5 nanorods with high power density. Nano Energy 52, 391–401 (2018)

    Article  CAS  Google Scholar 

  15. L. Zhang, Z. Liu, X. Lu, G. Yang, X. Zhang, Z.Y. Cheng, Nano-clip based composites with a low percolation threshold and high dielectric constant. Nano Energy 26, 550–557 (2016)

    Article  CAS  Google Scholar 

  16. T. Soulestin, V. Ladmiral, F.D. Dos Santos, B. Améduri, Vinylidene fluoride- and trifluoroethylene-containing fluorinated electroactive copolymers How does chemistry impact properties? Progr. Polym. Sci. 72, 16–60 (2017)

    Article  CAS  Google Scholar 

  17. Y. Zhang, C. Zhang, Y. Feng, T. Zhang, Q. Chen, Q. Chi, L. Liu, G. Li, Y. Cui, X. Wang, Z. Dang, Q. Lei, Excellent energy storage performance and thermal property of polymer-based composite induced by multifunctional one-dimensional nanofibers oriented in-plane direction. Nano Energy 56, 138–150 (2019)

    Article  CAS  Google Scholar 

  18. K. Bi, M. Bi, Y. Hao, W. Luo, Z. Cai, X. Wang, Y. Huang, Ultrafine core-shell BaTiO3@SiO2 structures for nanocomposite capacitors with high energy density. Nano Energy 51, 513–523 (2018)

    Article  CAS  Google Scholar 

  19. S. Luo, J. Yu, S. Yu, R. Sun, L. Cao, W.-H. Liao, C.-P. Wong, Significantly Enhanced Electrostatic Energy Storage Performance of Flexible Polymer Composites by Introducing Highly Insulating-Ferroelectric Microhybrids as Fillers. Adv. Energy Mater. 9, 1803204 (2019).

  20. Y. Xie, J. Wang, Y. Yu, W. Jiang, Z. Zhang, Enhancing breakdown strength and energy storage performance of PVDF-based nanocomposites by adding exfoliated boron nitride. Appl. Surf. Sci. 440, 1150–1158 (2018)

    Article  CAS  Google Scholar 

  21. Z.-H. Shen, J.-J. Wang, Y. Lin, C.-W. Nan, L.-Q. Chen, Y. Shen, High-throughput phase-field design of high-energy-density polymer nanocomposites. Adv. Mater. 30, 1704380 (2018).

  22. Y. Jiang, X. Zhang, Z. Shen, X. Li, J. Yan, B.-W. Li, C.-W. Nan, Ultrahigh breakdown strength and improved energy density of polymer nanocomposites with gradient distribution of ceramic nanoparticles. Adv. Funct. Mater. 30, 1906112 (2020).

  23. P.-H. Cazorla, O. Fuchs, M. Cochet, S. Maubert, G. Le Rhun, Y. Fouillet, E. Defay, A low voltage silicon micro-pump based on piezoelectric thin films. Sens. Actuators A 250, 35–39 (2016)

    Article  CAS  Google Scholar 

  24. G. Chen, X. Lin, J. Li, J.G. Fisher, Y. Zhang, S. Huang, X. Cheng, Enhanced dielectric properties and discharged energy density of composite films using submicron PZT particles. Ceram. Int. 44(13), 15331–15337 (2018)

    Article  CAS  Google Scholar 

  25. V. Tiwari, G. Srivastava, Structural, dielectric and piezoelectric properties of 0–3 PZT/PVDF composites. Ceram. Int. 41(6), 8008–8013 (2015)

    Article  CAS  Google Scholar 

  26. S. Revathi, L.J. Kennedy, S.K.K. Basha, R. Padmanabhan, Synthesis, structural, optical and dielectric properties of nanostructured 0–3 PZT/PVDF composite films. J Nanosci Nanotechnol 18(7), 4953–4962 (2018)

    Article  CAS  Google Scholar 

  27. J. Pei, Z. Zhao, X. Li, H. Liu, R. Li, Effect of preparation techniques on structural and electrical properties of PZT/PVDF composites. Mater. Express 7(3), 180–188 (2017)

    Article  CAS  Google Scholar 

  28. R.L.B. de Freitas, W.K. Sakamoto, L.P.S. Freitas, F. Castro, A.P.L. Filho, C. Kitano, A.A. de Carvalho, Characterization of PZT/PVDF composite film as functional material. IEEE Sensors J. 18(12), 5067–5072 (2018)

    Article  Google Scholar 

  29. Q. Wu, D.-J. Xie, Y.-D. Zhang, Z.-M. Jia, H.-Z. Zhang, Mechanical properties and simulation of nanographene/polyvinylidene fluoride composite films. Compos. B Eng. 156, 148–155 (2019)

    Article  CAS  Google Scholar 

  30. M.-S. Zheng, Y.-T. Zheng, J.-W. Zha, Y. Yang, P. Han, Y.-Q. Wen, Z.-M. Dang, Improved dielectric, tensile and energy storage properties of surface rubberized BaTiO3/polypropylene nanocomposites. Nano Energy 48, 144–151 (2018)

    Article  CAS  Google Scholar 

  31. S.Y.L. Zhang, S. Chen, D. Wang, B.-Z. Han, Z.M. Dang, Preparation and dielectric properties of core-shell structured Ag@polydopamine/poly(vinylidene fluoride) composites. Compos. Sci. Technol. 110, 126–131 (2015)

    Article  CAS  Google Scholar 

  32. L. Zhou, Y. Zhou, Y. Shi, T. Chen, T. Zou, D. Zhou, Q. Fu, Enhancing thermal stability of P(VDF-HFP) based nanocomposites with core-shell fillers for energy storage applications. Compos. Sci. Technol. 186, 107934 (2020)

    Article  CAS  Google Scholar 

  33. C. Xiao, Y. Tang, L. Chen, X. Zhang, K. Zheng, X. Tian, Preparation of highly thermally conductive epoxy resin composites via hollow boron nitride microbeads with segregated structure. Compos. A Appl. Sci. Manuf. 121, 330–340 (2019)

    Article  CAS  Google Scholar 

  34. C. Fu, C. Yan, L. Ren, X. Zeng, G. Du, R. Sun, J. Xu, C.-P. Wong, Improving thermal conductivity through welding boron nitride nanosheets onto silver nanowires via silver nanoparticles. Compos. Sci. Technol. 177, 118–126 (2019)

    Article  CAS  Google Scholar 

  35. J. Chen, X. Huang, B. Sun, P. Jiang, Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability. ACS Nano 13(1), 337–345 (2018)

    Article  CAS  Google Scholar 

  36. Y. Zhuang, K. Zheng, X. Cao, Q. Fan, G. Ye, J. Lu, J. Zhang, Y. Ma, Flexible graphene nanocomposites with simultaneous highly anisotropic thermal and electrical conductivities prepared by engineered graphene with flat morphology. ACS Nano 14(9), 11733–11742 (2020)

    Article  CAS  Google Scholar 

  37. X. Huang, C. Zhi, Y. Lin, H. Bao, G. Wu, P. Jiang, Y.-W. Mai, Thermal conductivity of graphene-based polymer nanocomposites. Mater. Sci. Eng. R 142, 100577 (2020)

    Article  Google Scholar 

  38. Z.-G. Wang, Y.-F. Huang, G.-Q. Zhang, H.-Q. Wang, J.-Z. Xu, J. Lei, L. Zhu, F. Gong, Z.-M. Li, Enhanced thermal conductivity of segregated poly(vinylidene fluoride) composites via forming hybrid conductive network of boron nitride and carbon nanotubes. Ind. Eng. Chem. Res. 57, 10391–10397 (2018)

    Article  CAS  Google Scholar 

  39. Q. Li, L. Chen, M.R. Gadinski, S. Zhang, G. Zhang, U. Li, E. Iagodkine, A. Haque, L.Q. Chen, N. Jackson, Q. Wang, Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523, 576–579 (2015)

    Article  CAS  Google Scholar 

  40. Y.S.H. Horibe, H. Oshiro, Y. Hosokawa, A. Kono, S. Takahashi, T. Nishiyama, Quantification of the solvent evaporation rate during the production of three PVDF crystalline structure types by solvent casting. Polym. J. 46, 104–110 (2014)

    Article  CAS  Google Scholar 

  41. S. Dash, R.N.P. Choudhary, M.N. Goswami, Enhanced dielectric and ferroelectric properties of PVDF-BiFeO3 composites in 0–3 connectivity. J. Alloys Compd. 715, 29–36 (2017)

    Article  CAS  Google Scholar 

  42. B. Xie, Q. Zhang, L. Zhang, Y. Zhu, X. Guo, P. Fan, H. Zhang, Ultrahigh discharged energy density in polymer nanocomposites by designing linear/ferroelectric bilayer heterostructure. Nano Energy 54, 437–446 (2018)

    Article  CAS  Google Scholar 

  43. A. Pal, A. Sasmal, B. Manoj, D.S.D.P. Rao, A.K. Haldar, S. Sen, Enhancement in energy storage and piezoelectric performance of three phase (PZT/MWCNT/PVDF) composite. Mater. Chem. Phys. 244, 122639 (2020)

    Article  CAS  Google Scholar 

  44. Y. Zhang, J. Gao, H. Li, E. Wang, J. Zhang, L. Zhang, Effect of chelating polymer as chelating agent on the PZT/PVDF pyroelectric composites. J. Mater. Sci. 27(11), 11733–11738 (2016)

    CAS  Google Scholar 

  45. R. Li, L. Zhang, Z. Shi, J. Pei, Effects of coupling agents on the structure and electrical properties of PZT-poly (vinylidene fluoride) composites. Appl. Sci. 6(10), 282 (2016)

    Article  CAS  Google Scholar 

  46. R. Li, J. Zhou, H. Liu, J. Pei, Effect of polymer matrix on the structure and electric properties of piezoelectric lead zirconatetitanate/polymer composites. Materials 10(8), 945 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (2019-YB-005) and the National Natural Science Foundation of China (No. 51472189).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huajun Sun or Quanyao Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Wei, W., Sun, H. et al. Performance enhancements in poly(vinylidene fluoride)-based piezoelectric films prepared by the extrusion-casting process. J Mater Sci: Mater Electron 32, 21837–21847 (2021). https://doi.org/10.1007/s10854-021-06416-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06416-1

Navigation