Skip to main content
Log in

Preparation and Characterization of PANI/MWCNT/RGO Ternary Composites as Electrode Materials for Supercapacitors

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Electrode materials for supercapacitors are extensively studied at present; however, their structural and electrochemcial properties still require further improvement. Hence, a series of polyaniline/reduced graphene oxide binary composites (PANI/RGO, PG-i, i = 1–5) and polyaniline/multi-walled carbon nanotubes/reduced graphene oxide ternary composites (PANI/MWCNT/RGO, PCG-i, i = 1–6) were prepared by a facile hydrothermal method. The morphology, structure and electrochemical performance of these samples are systematically analyzed and discussed. Analysis shows that all the samples have abundant pore structure. By changing the ratio of components, PCG-5 shows superior comprehensive electrochemical performance, including a high specific capacitance of 478 F g−1 at 1 A g−1, a considerable capacitance retention (63.56%, from 1 A g−1 to 20 A g−1, and 55.33%, from 1 A g−1 to 50 A g−1) and an extraordinary cycling stability (64% after 3500 cycles, at 2 A g−1) in 1 M H2SO4. The results prove that the PANI/MWCNT/RGO ternary composites have great potential as supercapacitor electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Muzaffar, M.B. Ahamed, K. Deshmukh, and J. Thirumalai, A review on recent advances in hybrid supercapacitors: Design, fabrication and applications. Renew. Sustain. Energy Rev. 101, 123 (2019)

    CAS  Google Scholar 

  2. K. Poonam, A. Sharma, and S.K. Arora, Tripathi, review of supercapacitors: Materials and devices. J. Energy Storage 21, 801 (2019)

    Google Scholar 

  3. Z.F. Yang, J.R. Tian, Z.F. Yin, C.J. Cui, W.Z. Qian, and F. Wei, Carbon nanotube and graphene-based nanomaterials and applications in high-voltage supercapacitor: A review. Carbon 141, 467 (2019)

    CAS  Google Scholar 

  4. C.X. Shao, T. Xu, J. Gao, Y. Liang, Y. Zhao, and L.T. Qu, Flexible and integrated supercapacitor with tunable energy storage. Nanoscale 9, 12324 (2017)

    CAS  Google Scholar 

  5. H.L. Wang, Q.L. Hao, X.J. Yang, L.D. Lu, and X. Wang, A nanostructured graphene/polyaniline hybrid material for supercapacitors. Nanoscale 2, 2164 (2010)

    CAS  Google Scholar 

  6. T. Wang, X.B. Zang, X.M.Z. Wang, X.X. Gu, Q.G. Shao, and N. Cao, Recent advances in fluorine-doped/fluorinated carbon-based materials for supercapacitors. Energy Storage Mater. 30, 367 (2020)

    Google Scholar 

  7. G.M. Zhou, L. Xu, G.W. Hu, L.Q. Ma, and Y. Cui, Nanowires for electrochemical energy storage. Chem. Rev. 119, 11042 (2019)

    CAS  Google Scholar 

  8. Y. Wu, Z. Meng, J. Yang, and Y. Xue, Flexible fiber-shaped supercapacitors based on graphene/polyaniline hybrid fibers with high energy density and capacitance. Nanotechnology 32, 295401 (2021)

    CAS  Google Scholar 

  9. P.C. Du, Y.M. Dong, H.X. Kang, X. Yang, Q. Wang, J.Y. Niu, S.H. Wang, and P. Liu, Graphene-wrapped polyaniline nanowire array modified functionalized of carbon cloth for high-performance flexible solid-state supercapacitor. ACS Sustain. Chem. Eng. 6, 14723 (2018)

    CAS  Google Scholar 

  10. L.B. Wang, H.L. Yang, X.X. Liu, R. Zeng, M. Li, Y.H. Huang, and X.L. Hu, Constructing hierarchical tectorum-like alpha-Fe2O3 PPy nanoarrays on carbon cloth for solid-state asymmetric supercapacitors. Angew. Chem., Int. Ed. 56, 1105 (2017)

    CAS  Google Scholar 

  11. M.N. Xu, H. Guo, R. Xue, M.Y. Wang, N. Wu, X.Q. Wang, J.Y. Zhang, T.T. Zhang, and W. Yang, Sandwich-like GO@Co(OH)2/PANI derived from MOFs as high-performance electrode for supercapacitors. J. Alloys Compd. 863, 157699 (2021)

    CAS  Google Scholar 

  12. Y.Q. Jiang, and J.P. Liu, Definitions of pseudocapacitive materials: A brief review. Energy Environ. Mater. 2, 30 (2019)

    Google Scholar 

  13. Y.F. Yuan, W.C. Zhao, L. Chen, G.S. Cai, and S.Y. Guo, CoO hierarchical mesoporous nanospheres@TiO2@C for high-performance lithium-ion storage. Appl. Surf. Sci. 556, 149810 (2021)

    CAS  Google Scholar 

  14. W.C. Zhao, Y.F. Yuan, P.F. Du, M. Zhu, S.M. Yin, and S.Y. Guo, Multi-shelled hollow nanospheres of SnO2/Sn@TiO2@C composite as high-performance anode for lithium-ion batteries. ChemElectroChem 8, 3282 (2021)

    CAS  Google Scholar 

  15. A.M. Bryan, L.M. Santino, Y. Lu, S. Acharya, and J.M. D’Arcy, Conducting polymers for pseudocapacitive energy storage. Chem. Mater. 28, 5989 (2016)

    CAS  Google Scholar 

  16. L.L. Zhang, and X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520 (2009)

    CAS  Google Scholar 

  17. Y. Gogotsi, and R.M. Penner, Energy storage in nanomaterials-capacitive, pseudocapacitive, or battery-like? ACS Nano 12, 2081 (2018)

    CAS  Google Scholar 

  18. V. Augustyn, P. Simon, and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597 (2014)

    CAS  Google Scholar 

  19. F. Farjadian, S. Abbaspour, M.A.A. Sadatlu, S. Mirkiani, A. Ghasemi, M. Hoseini-Ghahfarokhi, N. Mozaffari, M. Karimi, and M.R. Hamblin, Recent developments in graphene and graphene oxide: properties, synthesis, and modifications: A review. ChemistrySelect 5, 10200 (2020)

    CAS  Google Scholar 

  20. V. Chabot, D. Higgins, A.P. Yu, X.C. Xiao, Z.W. Chen, and J.J. Zhang, A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ. Sci. 7, 1564 (2014)

    CAS  Google Scholar 

  21. J. Du, L. Liu, Y.F. Yu, L.L. Zhang, Y. Zhang, and A.B. Chen, Synthesis of nitrogen doped graphene aerogels using solid supported strategy for supercapacitor. Mater. Chem. Phys. 223, 145 (2019)

    CAS  Google Scholar 

  22. D. Liu, H.X. Wang, P.C. Du, W.L. Wei, Q. Wang, and P. Liu, Flexible and robust reduced graphene oxide/carbon nanoparticles/polyaniline (RGO/CNs/PANI) composite films: Excellent candidates as free-standing electrodes for high-performance supercapacitors. Electrochim. Acta 259, 161 (2018)

    CAS  Google Scholar 

  23. C.Y. Xiong, T.H. Li, T.K. Zhao, A.L. Dang, H. Li, X.L. Ji, W.B. Jin, S.S. Jiao, Y.D. Shang, and Y.G. Zhang, Reduced graphene oxide-carbon nanotube grown on carbon fiber as binder-free electrode for flexible high-performance fiber supercapacitors. Compos. B 116, 7 (2017)

    CAS  Google Scholar 

  24. J.B. Yang, X.X. Ji, L.B. Liu, Y. Xiang, and Y.L. Zhu, One step fabrication of graphene/polypyrrole/Ag composite electrode towards compressible supercapacitor. J. Alloys Compd. 820, 153081 (2020)

    CAS  Google Scholar 

  25. S.H. Aboutalebi, A.T. Chidembo, M. Salari, K. Konstantinov, D. Wexler, H.K. Liu, and S.X. Dou, Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors. Energy Environ. Sci. 4, 1855 (2011)

    CAS  Google Scholar 

  26. A.G. Pandolfo, and A.F. Hollenkamp, Carbon properties and their role in supercapacitors. J. Power Sources 157, 11 (2006)

    CAS  Google Scholar 

  27. A. Kumar, N. Kumar, Y. Sharma, J. Leu, and T.Y. Tseng, Synthesis of free-standing flexible rGO/MWCNT films for symmetric supercapacitor application. Nanoscale Res. Lett. 14, 266 (2019)

    Google Scholar 

  28. M.E. Abdelhamid, A.P. O’Mullane, and G.A. Snook, Storing energy in plastics: a review on conducting polymers & their role in electrochemical energy storage. RSC Adv. 5, 11611 (2015)

    CAS  Google Scholar 

  29. A. Eftekhari, L. Li, and Y. Yang, Polyaniline supercapacitors. J. Power Sour. 347, 86 (2017)

    CAS  Google Scholar 

  30. Y.Y. Huang, J.L. Lu, S.M. Kang, D. Weng, L. Han, and Y.F. Wang, Synthesis and application of MnO2/PANI/MWCNT ternary nanocomposite as an electrode material for supercapacitors. Int. J. Electrochem. Sci. 14, 9298 (2019)

    CAS  Google Scholar 

  31. T.Y. Liu, and Y. Li, Addressing the Achilles’ heel of pseudocapacitive materials: Long-term stability. InfoMat 2, 807 (2020)

    CAS  Google Scholar 

  32. J. Banerjee, K. Dutta, M.A. Kader, and S.K. Nayak, An overview on the recent developments in polyaniline-based supercapacitors. Polym. Adv. Technol. 30, 1902 (2019)

    CAS  Google Scholar 

  33. P.B. Liu, J. Yan, X.G. Gao, Y. Huang, and Y.Q. Zhang, Construction of layer-by-layer sandwiched graphene/polyaniline nanorods/carbon nanotubes heterostructures for high performance supercapacitors. Electrochim. Acta 272, 77 (2018)

    CAS  Google Scholar 

  34. R. Pal, S.L. Goyal, I. Rawal, and A.K. Gupta, Ruchi, Efficient energy storage performance of electrochemical supercapacitors based on polyaniline/graphene nanocomposite electrodes. J. Phys. Chem. Solids 154, 110057 (2021)

    CAS  Google Scholar 

  35. D.D. Potphode, L. Sinha, and P.M. Shirage, Redox additive enhanced capacitance: Multi-walled carbon nanotubes/polyaniline nanocomposite based symmetric supercapacitors for rapid charge storage. Appl. Surf. Sci. 469, 162 (2019)

    CAS  Google Scholar 

  36. C.C. Wang, Y. Yang, R.J. Li, D.T. Wu, Y. Qin, and Y. Kong, Polyaniline functionalized reduced graphene oxide/carbon nanotube ternary nanocomposite as a supercapacitor electrode. Chem. Commun. (Cambridge, UK) 56, 4003 (2020)

    CAS  Google Scholar 

  37. W.Q. Dai, L. Ma, M.Y. Gan, S.Y. Wang, X.W. Sun, H.H. Wang, H.N. Wang, and T. Zhou, Fabrication of sandwich nanostructure graphene/polyaniline hollow spheres composite and its applications as electrode materials for supercapacitor. Mater. Res. Bull. 76, 344 (2016)

    CAS  Google Scholar 

  38. S. Sardana, A. Gupta, A.S. Maan, S. Dahiya, K. Singh, and A. Ohlan, Design and synthesis of polyaniline/MWCNT composite hydrogel as a binder-free flexible supercapacitor electrode. Indian J. Phys. (2021) https://doi.org/10.1007/s12648-020-01996-w.

    Article  Google Scholar 

  39. J. Han, J. Sohn, S. Cho, Y. Jo, J. Kim, H. Woo, H. Kim, A.I. Inamdar, H. Kim, and H. Im, Synthesis of self-assembling carbon nanotube-polyaniline nanocomposite on a flexible graphene-coated substrate for electrochemical electrode applications. J. Korean Phys. Soc. 67, 512 (2015)

    CAS  Google Scholar 

  40. L. Zhang, and S.W. Or, Self-assembled three-dimensional macroscopic graphene/MXene-based hydrogel as electrode for supercapacitor. APL Mater. 8, 091101 (2020)

    CAS  Google Scholar 

  41. X. Du, X. Shi, Y. Li, and K. Cao, Construction of N, S-co-doped graphene/polyaniline composite as free-standing electrode material. Int. J. Energy Res. 45, 6227 (2020)

    Google Scholar 

  42. J.P. Pouget, M.E. Jozefowicz, A.J. Epstein, X. Tang, and A.G. MacDiarmid, X-ray structure of polyaniline. Macromol. (Washington, DC, US) 24, 779 (1991)

    CAS  Google Scholar 

  43. Z.J. Sun, J.M. Zhang, F. Ye, W.J. Wang, G.C. Wang, Z.P. Zhang, S.L. Li, Y. Zhou, and J. Cai, Vulcanization treatment: An effective way to improve the electrochemical cycle stability of polyaniline in supercapacitors. J. Power Sour. 443, 227246 (2019)

    CAS  Google Scholar 

  44. X. Li, Y. Tang, J.H. Song, W. Yang, M.S. Wang, C.Z. Zhu, W.G. Zhao, J.M. Zheng, and Y.H. Lin, Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor. Carbon 129, 236 (2018)

    CAS  Google Scholar 

  45. L. Miao, D.Z. Zhu, M.X. Liu, H. Duan, Z.W. Wang, Y.K. Lv, W. Xiong, Q.J. Zhu, L.C. Li, X.L. Chai, and L.H. Gan, N, S Co-doped hierarchical porous carbon rods derived from protic salt: Facile synthesis for high energy density supercapacitors. Electrochim. Acta 274, 378 (2018)

    CAS  Google Scholar 

  46. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56 (1991)

    CAS  Google Scholar 

  47. A. Charlier, E. McRae, R. Heyd, M.F. Charlier, and D. Moretti, Classification for double-walled carbon nanotubes. Carbon 37, 1779 (1999)

    CAS  Google Scholar 

  48. P. Simon, Y. Gogotsi, and B. Dunn, Where do batteries end and supercapacitors begin? Science 343, 1210 (2014)

    CAS  Google Scholar 

  49. D. Chao, C. Zhu, P. Yang, X. Xia, J. Liu, J. Wang, X. Fan, S.V. Savilov, J. Lin, H.J. Fan, and Z.X. Shen, Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat. Commun. 7, 12122 (2016)

    CAS  Google Scholar 

  50. S.Y. Su, L.Q. Lai, R. Li, Y.M. Lin, H.M. Dai, and X.H. Zhu, Annealing-assisted dip-coating synthesis of ultrafine Fe3O4 nanoparticles/graphene on carbon cloth for flexible quasi-solid-state symmetric supercapacitors. ACS Appl. Energy Mater. 3, 9379 (2020)

    CAS  Google Scholar 

  51. D.P. Dubal, N.R. Chodankar, D.H. Kim, and P. Gomez-Romero, Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem. Soc. Rev. 47, 2065 (2018)

    CAS  Google Scholar 

  52. Z. Mao, R. Wang, B. He, Y. Gong, and H. Wang, Large-area, uniform, aligned arrays of Na3 (VO)2 (PO4)2F on carbon nanofiber for quasi-solid-state sodium-ion hybrid capacitors. Small 15, e1902466 (2019)

    Google Scholar 

  53. R. Fei, H. Wang, Q. Wang, R. Qiu, S. Tang, R. Wang, B. He, Y. Gong, and H.J. Fan, In situ hard-template synthesis of hollow bowl-like carbon: A potential Versatile platform for sodium and zinc ion capacitors. Adv. Energy Mater. 10, 2002741 (2020)

    CAS  Google Scholar 

  54. Z.Y. Yang, Y.F. Yuan, M. Zhu, S.M. Yin, J.P. Cheng, and S.Y. Guo, Superior rate-capability and long-lifespan carbon nanotube-in-nanotube@Sb2S3 anode for lithium-ion storage. J. Mater. Chem. A 9, 22334 (2021)

    CAS  Google Scholar 

  55. O. Gorduk, M. Gencten, S. Gorduk, M. Sahin, and Y. Sahin, Electrochemical fabrication and supercapacitor performances of metallo phthalocyanine/functionalized-multiwalled carbon nanotube/polyaniline modified hybrid electrode materials. J. Energy Storage 33, 102049 (2021)

    Google Scholar 

  56. M.S. Kumar, K.Y. Yasoda, S.K. Batabyal, and N.K. Kothurkar, Carbon-polyaniline nanocomposites as supercapacitor materials. Mater. Res. Express 5, 045505 (2018)

    Google Scholar 

  57. Q. Cheng, J. Tang, N. Shinya, and L.C. Qin, Polyaniline modified graphene and carbon nanotube composite electrode for asymmetric supercapacitors of high energy density. J. Power Sour. 241, 423 (2013)

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Key Research and Development Project of Sichuan Province, China (Grant No. 2017GZ0396), Guizhou Science and Technology Program (Grant No. [2020]2Y063-2020QT) and the Fundamental Research Funds for Central Universities. The authors acknowledge the help of Hui Wang from the Analytical and Testing Center of Sichuan University for SEM analysis.

Author information

Authors and Affiliations

Authors

Contributions

Huimin Dai: Methodology, Data curation, Writing-original draft. Rong Li: Investigation, Methodology, Data curation, Validation. Siyu Su: Data curation, Supervision. Yifan Cui: Investigation, Supervision. Yueming Lin: Investigation. Liang Zhang: Investigation. Xiaohong Zhu: Methodology, Supervision, Writing-review & editing, Resources, Funding acquisition.

Corresponding author

Correspondence to Xiaohong Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

SEM images of PG-i (i = 1, 2, 3) (a–c), PG-5 (d), PCG-i (i = 1, 2, 3, 4) (e–h) and PCG-6 (i) (Fig. S1); SEM images of RGO (a), PANI (b) and MWCNT (c) (Fig. S2); XRD patterns of RGO, PANI, MWCNT, MCG, PG-4 and PCG-5 (Fig. S3); the high-resolution C 1s spectra, the high-resolution N 1s spectra, the high-resolution O 1s spectra and the high-resolution S 2p spectra of MCG (Fig. S4); N2 adsorption-desorption isotherms (a–c), pore size distribution calculated by the DFT method (d) of RGO, PG-4 and PCG-5 (Fig. S5); MIP data analysis of RGO, PG-i (i = 1–5), MCG and PCG-i (i = 1–6) (Table SI); the fitted Rs and Rct of PG-i (i =1–5), MCG and PCG-i (i =1–6) (Table SII).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1055 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, H., Li, R., Su, S. et al. Preparation and Characterization of PANI/MWCNT/RGO Ternary Composites as Electrode Materials for Supercapacitors. J. Electron. Mater. 51, 1409–1420 (2022). https://doi.org/10.1007/s11664-021-09421-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09421-6

Keywords

Navigation