Skip to main content
Log in

Ag-Doped CuO Microflowers on Multilayer Graphene for a Highly Sensitive Non-Enzymatic Glucose Sensor

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In situ synthesis of Ag-doped CuO microflowers on multilayer graphene (MLG) and their application in non-enzymatic detection of glucose are studied here. Mechanically exfoliated MLG has particular advantages such as low defects and cost efficiency. However, the deposition of CuO on its surface is still a challenge due to the lack of active sites on the MLG surface. In this work, a one-step chemical bath deposition approach is developed to synthesize homogeneous CuO microflowers and Ag-doped CuO microflowers on MLG surfaces. The CuO structures are composed of ultra-small CuO nano-spindles and internal nano-gaps. The materials are well characterized by x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and energy-dispersive spectrometry (EDS) and evaluated as glucose sensors. The electrode of Ag-doped CuO microflowers on MLG exhibits a sensitivity of 1527 μA mM−1cm−2 in a linear response range of 0.01 mM ~ 6.0 mM with an excellent selectivity and a long-term stability. The composite is a promising material for glucose sensors due to its facile synthesis and highly detective performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D. Lee, J. Lee, J. Kim, J. Kim, H.B. Na, B. Kim, C.H. Shin, J.H. Kwak, A. Dohnalkova, J.W. Grate, T. Hyeon, and H.S. Kim, Simple Fabrication of a Highly Sensitive and Fast Glucose Biosensor Using Enzymes Immobilized in Mesocellular Carbon Foam. Adv. Mater. 17, 2828 (2005).

    Article  CAS  Google Scholar 

  2. Y. Zhang, G. Chang, S. Liu, W. Lu, J. Tian, and X. Sun, A New Preparation of Au Nanoplates and Their Application for Glucose Sensing. Biosens. Bioelectron. 28, 344 (2011).

    Article  CAS  Google Scholar 

  3. H. Tang, F. Yan, P. Lin, J. Xu, and H.L.W. Chan, Highly Sensitive Glucose Biosensors Based on OIrganic Electrochemical Transistors Using Platinum Gate Electrodes Modified with Enzyme and Nanomaterials. Adv. Funct. Mater. 21, 2264 (2011).

    Article  Google Scholar 

  4. S.K. Meher and G.R. Rao, Archetypal Sandwich-Structured CuO for High Performance Non-Enzymatic Sensing of Glucose. Nanoscale 5, 2089 (2013).

    Article  CAS  Google Scholar 

  5. D.W. Hwang, S. Lee, M. Seo, and T.D. Chung, Recent Advances in Electrochemical Non-Enzymatic Glucose Sensors−A review. Anal. Chim. Acta 1033, 1 (2018).

    Article  CAS  Google Scholar 

  6. K. Tian, M. Prestgard, and A. Tiwari, A Review of Recent Advances in Nonenzymatic Glucose Sensors. Mater. Sci. Eng. C 41, 100 (2014).

    Article  CAS  Google Scholar 

  7. G. Ali, A. Tahira, A.B. Mallah, S.A. Mallah, A. Ibupoto, A.A. Khand, W. Baradi, M. Willander, C. Yu, and Z.H. Ibupoto, Functional CuO Microstructures for Glucose Sensing. J. Electron. Mater. 47, 1519 (2018).

    Article  CAS  Google Scholar 

  8. Y. Ni, J. Xu, Q. Liang, and S.J. Shao, Enzyme-Free Glucose Sensor Based on Heteroatom-Enriched Activated Carbon (HAC) Decorated with Hedgehog-Like NiO Nanostructures. Sens. Actuators B-Chem. 250, 491 (2017).

    Article  CAS  Google Scholar 

  9. H.Y. Xu, C.K. Xia, S.Y. Wang, F. Han, M.K. Akbari, Z.Y. Hai, and S. Zhuiykov, Electrochemical Non-Enzymatic Glucose Sensor Based on Hierarchical 3D Co3O4/Ni Heterostructure Electrode for Pushing Sensitivity Boundary to a New Limit. Sens. Actuators B-Chem. 267, 93 (2018).

    Article  CAS  Google Scholar 

  10. Y.J. Liu, W.Q. Zhao, X.L. Li, J.Q. Liu, Y.D. Han, J.B. Wu, X. Zhang, and Y. Xu, Hierarchical Alpha-Fe2O3 Microcubes Supported on Ni Foam as Non-Enzymatic Glucose Sensor. App. Surf. Sci. 512, 145710 (2020).

    Article  CAS  Google Scholar 

  11. Q.B. Zhang, K.L. Zhang, D.G. Xu, G.C. Yang, H. Huang, F.D. Nie, C.M. Liu, and S.Y. Yang, CuO Nanostructures: Synthesis, Characterization, Growth Mechanisms, Fundamental Properties and Applications. Prog. Mater. Sci. 60, 208 (2014).

    Article  CAS  Google Scholar 

  12. A. Rahim, Z.U. Rehman, S. Mir, N. Muhammad, F. Rehman, M.H. Nawaz, M. Yaqub, S.A. Siddiqi, and A.A. Chaudhry, A Non-Enzymatic Glucose Sensor Based on CuO-Nanostructure Modified Carbon Ceramic Electrode. J. Mol. Liq. 248, 425 (2017).

    Article  CAS  Google Scholar 

  13. M.S. Jagadeesan, K. Movlaee, T. Krishnakumar, S.G. Leonardi, and G. Neri, One-Step Microwave-Assisted Synthesis and Characterization of Novel CuO Nanodisks for Non-Enzymatic Glucose Sensing. J. Electroanal. Chem. 835, 161 (2019).

    Article  CAS  Google Scholar 

  14. R.K. Sahoo, A. Das, K. Samantaray, S.K. Singh, R.S. Mane, H.C. Shin, J.M. Yun, and K.H. Kim, Electrochemical Glucose Sensing Characteristics of Two-Dimensional Faceted and Non-faceted CuO Nanoribbons. CrystEngComm 21, 1607 (2019).

    Article  CAS  Google Scholar 

  15. P. Chakraborty, S. Dhar, K. Debnath, and S.P. Mondal, Glucose and Hydrogen Peroxide Dual-Mode Electrochemical Sensing Using Hydrothermally Grown CuO Nanorods. J. Electroanal. Chem. 833, 213 (2018).

    Article  Google Scholar 

  16. L. Li, Y. Liu, L. Ai, and J. Jiang, Synthesis of the Crystalline Porous Copper Oxide Architectures Derived from Metal-Organic Framework for Electrocatalytic Oxidation and Sensitive Detection of Glucose. J. Ind. Eng. Chem. 70, 330 (2018).

    Article  Google Scholar 

  17. A. Ashok, A. Kumar, and F. Tarlochan, Highly Efficient Nonenzymatic Glucose Sensors Based on CuO Nanoparticles. Appl. Surf. Sci. 481, 712 (2019).

    Article  CAS  Google Scholar 

  18. J. Song, L. Xu, C.Y. Zhou, R.Q. Xing, Q.L. Dai, D.L. Liu, and H.W. Song, Synthesis of Graphene Oxide Based CuO Nanoparticles Composite Electrode for Highly Enhanced Nonenzymatic Glucose Detection. ACS Appl. Mater. Inter. 5, 12928 (2013).

    Article  CAS  Google Scholar 

  19. K. Dhara, T. Ramachandran, B.G. Nair, and T.G.S. Babu, Single Step Synthesis of Au-CuO Nanoparticles Decorated Reduced Graphene Oxide for High Performance Disposable Nonenzymatic Glucose Sensor. J. Electroanal. Chem. 743, 1 (2015).

    Article  CAS  Google Scholar 

  20. S. Pourbeyram, J. Abdollahpour, and M. Soltanpour, Green Synthesis of Copper Oxide Nanoparticles Decorated Reduced Graphene Oxide for High Sensitive Detection of Glucose. Mater. Sci. Eng. C 94, 850 (2019).

    Article  CAS  Google Scholar 

  21. R. Li, X.J. Liu, H. Wang, Y. Wu, K.C. Chan, and Z.P. Lu, Sandwich Nanoporous Framework Decorated with Vertical CuO Nanowire Arrays for Electrochemical Glucose Sensing. Electrochim. Acta 299, 470 (2019).

    Article  CAS  Google Scholar 

  22. D. Xu, C.L. Zhu, X. Meng, Z.X. Chen, Y. Li, D. Zhang, and S.M. Zhu, Design and Fabrication of Ag-CuO Nanoparticles on Reduced Graphene Oxide for Nonenzymatic Detection of Glucose. Sens. Actuators B-Chem. 265, 435 (2018).

    Article  CAS  Google Scholar 

  23. Q. Liu, Z.M. Jiang, Y.R. Tang, X. Yang, M. Wei, and M.X. Zhang, A Facile Synthesis of a 3D High-Index Au NCs@CuO Supported on Reduced Graphene Oxide for Glucose Sensing. Sens. Actuators B-Chem. 255, 454 (2018).

    Article  CAS  Google Scholar 

  24. Z.M. Zhang, P. Pan, X.W. Liu, Z.C. Yang, J. Wei, and Z. Wei, 3D-Copper Oxide and Copper Oxide/Few-Layer Graphene with Screen Printed Nanosheet Assembly for Ultrasensitive Non-Enzymatic Glucose Sensing. Mater. Chem. Phys. 187, 28 (2017).

    Article  CAS  Google Scholar 

  25. J.Z. Zheng, W.X. Zhang, Z.Q. Lin, C. Wei, W.Z. Yang, P.H. Dong, Y.R. Yan, and S.R. Hu, Microwave Synthesis of 3D Rambutan-like CuO and CuO/Reduced Graphene Oxide Modified Electrodes for Non-Enzymatic Glucose Detection. J. Mater. Chem. B 4, 1247 (2016).

    Article  CAS  Google Scholar 

  26. L.Q. Luo, L.M. Zhu, and Z.X. Wang, Nonenzymatic Amperometric Determination of Glucose by CuO Nanocubes-Graphene Nanocomposite Modified Electrode. Bioelectrochemistry 88, 156 (2012).

    Article  CAS  Google Scholar 

  27. Y.W. Hsu, T.K. Hsu, C.L. Sun, Y.T. Nien, N.W. Pu, and M.D. Ger, Synthesis of CuO/Graphene Nanocomposites for Nonenzymatic Electrochemical Glucose Biosensor Applications. Electrochim. Acta 82, 152 (2012).

    Article  CAS  Google Scholar 

  28. D.X. Ye, G.H. Liang, H.X. Li, J. Luo, S. Zhang, H. Chen, and J.L. Kong, A Novel Nonenzymatic Sensor based on CuO Nanoneedle/Graphene/Carbon Nanofiber Modified Electrode for Probing Glucose in Saliva. Talanta 116, 223 (2013).

    Article  CAS  Google Scholar 

  29. Y. Tian, Y. Liu, W.P. Wang, X. Zhang, and W. Peng, CuO Nanoparticles on Sulfur-Doped Graphene for Nonenzymatic Glucose Sensing. Electrochim. Acta 156, 244 (2015).

    Article  CAS  Google Scholar 

  30. C.L. Sun, W.L. Cheng, T.K. Hsu, C.W. Chang, J.L. Chang, and J.M. Zen, Ultrasensitive and Highly stable Nonenzymatic Glucose Sensor by a CuO/ Graphene-Modified Screen-Printed Carbon Electrode Integrated With Flow-Injection Analysis. Electrochem. Commun. 30, 91 (2013).

    Article  CAS  Google Scholar 

  31. X.L. Wang, E.L. Liu, and X.L. Zhang, Non-Enzymatic Glucose Biosensor Based on Copper Oxide-Reduced Graphene Oxide Nanocomposites Synthesized from Water-Isopropanol Solution. Electrochim. Acta 130, 253 (2014).

    Article  CAS  Google Scholar 

  32. T.T. Yang, J.K. Xu, L.M. Lu, X.F. Zhu, Y.S. Gao, H.K. Xing, Y.F. Yu, W.C. Ding, and Z. Liu, Copper Nanoparticles/Graphene Oxide/Single Wall Carbon Nanotubes Hybrid Materialsas Electrochemical Sensing Platform for Nonenzymatic Glucose Detection. J. Electroanal. Chem. 761, 118 (2016).

    Article  CAS  Google Scholar 

  33. L. Zhang, J. Xu, X. Hu, K. Song, J. Wu, B. Li, and J.P. Cheng, Ultra-Small Co-Doped Mn3O4 Nanoparticles Tiled on Multilayer Graphene with Enhanced Performance for Lithium Ion Battery Anodes. J. Appl. Electrochem. 49, 1193 (2019).

    Article  CAS  Google Scholar 

  34. J. Xu, J. Wu, L. Luo, X. Chen, H. Qin, V. Dravid, S. Mi, and C. Jia, Co3O4 Nanocubes Homogeneously Assembled on Few-Layer Graphene for High Energy Density Lithium-Ion Batteries. J. Power Sources 274, 816 (2015).

    Article  CAS  Google Scholar 

  35. J. Xu, M. Tang, Z. Hu, X. Hu, T. Zhou, K. Song, J. Wu, and J. Cheng, Standing and Lying Ni(OH)2 Nanosheets on Multilayer Graphene for High-Performance Supercapacitors. Nanomaterials 11, 1662 (2021).

    Article  CAS  Google Scholar 

  36. W. Zhao, M. Li, Y. Qi, Y. Tao, Z. Shi, Y. Liu, and J. Chen, Ultrasound Sonochemical Synthesis of Amorphous Sb2S3-Graphene Composites for Sodium-Ion Batteries. J. Colloid Interface Sci. 586, 404 (2021).

    Article  CAS  Google Scholar 

  37. J. Xu, M. Li, W. Sheng, J. Wu, K. Song, X. Wang, and J. Chen, One-Step Synthesis of Ultra-Small Fe2O3 Nanoparticles on Carbon Nanotubes at a Low Temperature as a high-Performance Anode for Supercapacitors. Ionics 26, 5211 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Zhejiang Provincial Science and Technology Program (LGG20F010007).

Funding

The Zhejiang Provincial Science and Technology Program, LGG20F010007, Tao Zhou

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junming Xu or J. P. Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Tang, M., Liu, S. et al. Ag-Doped CuO Microflowers on Multilayer Graphene for a Highly Sensitive Non-Enzymatic Glucose Sensor. J. Electron. Mater. 51, 995–1003 (2022). https://doi.org/10.1007/s11664-021-09387-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09387-5

Keywords

Navigation