Skip to main content
Log in

High electrocatalytic activity of Ag doped MnWO4 microflowers towards glucose molecules

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, we report a facile and novel hydrothermal growth of Ag-doped MnWO4 material, and its electrocatalytic property towards glucose molecules has been investigated extensively. Crystal structure, morphology, and compositional features of the Ag-MnWO4 material are characterized by XRD and SEM equipped with energy-dispersive X-ray spectroscopy (EDAX). The morphology of the synthesized material is microflower structure, and each microflower consists of numerous nanorods diverging in all directions. The microflowers are homogeneous, well-organized in shape and size, and have grown uniformly. The glucose molecules are detected and sensed by Ag-MnWO4 electrocatalyst through the electrochemical method. The sensitivity of the Ag-MnWO4 material is calculated as 17.9 µAµM−1 cm−2 in the linear range 5–110 µM, and its response time is 8 s, respectively. Further, excellent selectivity and acceptable stability of the material are achieved. It is proposed that Ag-MnWO4 material would be an excellent glucose-sensing material because of its large surface area with enormous active catalytic centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.F. Clarke, J.R. Foster, Br. J. Biomed. Sci. 69, 83 (2012)

    Article  CAS  Google Scholar 

  2. A.D. Association, Diabetes Care 33, S62 (2010)

    Article  Google Scholar 

  3. B.B. Kamble, M. Naikwade, K.M. Garadkar, R.B. Mane, K.K.K. Sharma, B.D. Ajalkar, S.N. Tayade, J. Mater. Sci. Mater. Electron. 30, 13984 (2019)

    Article  CAS  Google Scholar 

  4. R. Vivekananth, R.S. Babu, K. Prasanna, C.W. Lee, R.A. Kalaivani, J. Mater. Sci. Mater. Electron. 29, 6763 (2018)

    Article  CAS  Google Scholar 

  5. N.H. Cho, J.E. Shaw, S. Karuranga, Y. Huang, J.D. da Rocha Fernandes, A.W. Ohlrogge, B. Malanda, Diabetes Res. Clin. Pract. 138, 271 (2018)

    Article  CAS  Google Scholar 

  6. K. Ogurtsova, J.D. da Rocha Fernandes, Y. Huang, U. Linnenkamp, L. Guariguata, N.H. Cho, D. Cavan, J.E. Shaw, L.E. Makaroff, Diabetes Res. Clin. Pract. 128, 40 (2017)

    Article  CAS  Google Scholar 

  7. C. Boss, E. Meurville, J.-M. Sallese, P. Ryser, Procedia Chem. 1, 313 (2009)

    Article  CAS  Google Scholar 

  8. M. Shehab, S. Ebrahim, M. Soliman, J. Lumin. 184, 110 (2017)

    Article  CAS  Google Scholar 

  9. S. Park, H. Boo, T.D. Chung, Anal. Chim. Acta 556, 46 (2006)

    Article  CAS  Google Scholar 

  10. B.V. McCleary, J.W. De Vries, J.I. Rader, G. Cohen, L. Prosky, D.C. Mugford, M. Champ, K. Okuma, J. AOAC Int. 93, 221 (2010)

    Article  CAS  Google Scholar 

  11. Y. Zou, L. He, K. Dou, S. Wang, P. Ke, A. Wang, RSC Adv. 4, 58349 (2014)

    Article  CAS  Google Scholar 

  12. A.A. Saei, J.E.N. Dolatabadi, P. Najafi-Marandi, A. Abhari, M. de la Guardia, Trends Anal. Chem. 42, 216 (2013)

    Article  CAS  Google Scholar 

  13. J. Wang, Chem. Rev. 108, 814 (2008)

    Article  CAS  Google Scholar 

  14. C. Chen, Q. Xie, D. Yang, H. Xiao, Y. Fu, Y. Tan, S. Yao, RSC Adv. 3, 4473 (2013)

    Article  CAS  Google Scholar 

  15. F. Chekin, S. Bagheri, S.B. Abd Hamid, Anal. Methods 4, 2423 (2012)

    Article  CAS  Google Scholar 

  16. C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, L. Niu, Anal. Chem. 81, 2378 (2009)

    Article  CAS  Google Scholar 

  17. F. Shi, W. Zheng, W. Wang, F. Hou, B. Lei, Z. Sun, W. Sun, Biosens. Bioelectron. 64, 131 (2015)

    Article  CAS  Google Scholar 

  18. S. Zhao, K. Zhang, Y. Sun, C. Sun, Bioelectrochemistry 69, 10 (2006)

    Article  CAS  Google Scholar 

  19. O. Heyer, N. Hollmann, I. Klassen, S. Jodlauk, L. Bohatý, P. Becker, J.A. Mydosh, T. Lorenz, D. Khomskii, J. Phys. Condens. Matter 18, L471 (2006)

    Article  CAS  Google Scholar 

  20. A. Tiwari, V. Singh, T.C. Nagaiah, J. Mater. Chem. A 6, 2681 (2018)

    Article  CAS  Google Scholar 

  21. Y. Li, X. Han, T. Yi, Y. He, X. Li, J. Energy Chem. 31, 54 (2019)

    Article  Google Scholar 

  22. T.-F. Yi, C.-L. Hao, C.-B. Yue, R.-S. Zhu, J. Shu, Synth. Met. 159, 1255 (2009)

    Article  CAS  Google Scholar 

  23. S. Ratha, R.T. Khare, M.A. More, R. Thapa, D.J. Late, C.S. Rout, RSC Adv. 5, 5372 (2015)

    Article  CAS  Google Scholar 

  24. F.X. Wang, S.Y. Xiao, Y.S. Zhu, Z. Chang, C.L. Hu, Y.P. Wu, R. Holze, J. Power Sour. 246, 19 (2014)

    Article  CAS  Google Scholar 

  25. X. Chen, G. Wu, P. Jiang, W. Liu, D. Bao, Appl. Phys. Lett. 94, 33501 (2009)

    Article  Google Scholar 

  26. K.K. Naik, A. Gangan, B. Chakraborty, C.S. Rout, Analyst 143, 571 (2018)

    Article  CAS  Google Scholar 

  27. K.K. Naik, S. Kumar, C.S. Rout, RSC Adv. 5, 74585 (2015)

    Article  CAS  Google Scholar 

  28. K.E. Sickafus, J.M. Wills, N.W. Grimes, J. Am. Ceram. Soc. 82, 3279 (1999)

    Article  CAS  Google Scholar 

  29. V.K. Sharma, C.M. Sayes, B. Guo, S. Pillai, J.G. Parsons, C. Wang, B. Yan, X. Ma, Sci. Total Environ. 653, 1042 (2019)

    Article  CAS  Google Scholar 

  30. M. Amina, T. Amna, M.S. Hassan, N.M. Al Musayeib, S.S.S. Al-Deyab, M.-S. Khil, Korean J. Chem. Eng. 33, 3169 (2016)

    Article  CAS  Google Scholar 

  31. K.K. Naik, A.S. Gangan, A. Pathak, B. Chakraborty, S.K. Nayak, C.S. Rout, ChemistrySelect 2, 5707 (2017)

    Article  CAS  Google Scholar 

  32. O.S. Ivanova, F.P. Zamborini, J. Am. Chem. Soc. 132, 70 (2010)

    Article  CAS  Google Scholar 

  33. I. Dugdale, M. Fleischmann, W.F.K. Wynne-Jones, Electrochim. Acta 5, 229 (1961)

    Article  CAS  Google Scholar 

  34. J.M.M. Droog, P.T. Alderliesten, G.A. Bootsma, J. Electroan. Chem. Interfacial Electrochem. 99, 173 (1979)

    Article  CAS  Google Scholar 

  35. R.K. Srivastava, S. Srivastava, T.N. Narayanan, B.D. Mahlotra, R. Vajtai, P.M. Ajayan, A. Srivastava, ACS Nano 6, 168 (2012)

    Article  CAS  Google Scholar 

  36. S.-H. Liao, S.-Y. Lu, S.-J. Bao, Y.-N. Yu, M.-Q. Wang, Anal. Chim. Acta 905, 72 (2016)

    Article  CAS  Google Scholar 

  37. Z. Shahnavaz, F. Lorestani, W.P. Meng, Y. Alias, J. Solid State Electrochem. 19, 1223 (2015)

    Article  CAS  Google Scholar 

  38. Y.-L.T. Ngo, L. Sui, W. Ahn, J.S. Chung, S.H. Hur, Nanoscale 9, 19318 (2017)

    Article  CAS  Google Scholar 

  39. M. Sivakumar, R. Madhu, S.-M. Chen, V. Veeramani, A. Manikandan, W.H. Hung, N. Miyamoto, Y.-L. Chueh, J. Phys. Chem. C 120, 17024 (2016)

    Article  CAS  Google Scholar 

  40. X. Wu, C. Bao, Q. Niu, W. Lu, Nanotechnology 30, 165501 (2019)

    Article  CAS  Google Scholar 

  41. R.X. Zhang, P. Yang, Y.X. Zhang, Mater. Lett. 272, 127850 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Kusha Kumar Naik would like to thank Dr. Chandra Sekhar Rout, IIT Bhubaneswar, for providing Lab facility to carry out the experiments and characterizations of the synthesized material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kusha Kumar Naik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 384 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manisha, Naik, K.K. High electrocatalytic activity of Ag doped MnWO4 microflowers towards glucose molecules. J Mater Sci: Mater Electron 32, 15182–15189 (2021). https://doi.org/10.1007/s10854-021-06070-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06070-7

Navigation