Skip to main content
Log in

Effect of GaN Substrate Properties on Vertical GaN PiN Diode Electrical Performance

  • Topical Collection: 62nd Electronic Materials Conference 2020
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Present GaN technology consists primarily of heteroepitaxial, lateral high electron mobility transistors; however, high-power devices would be much more efficiently manufactured with a vertical geometry due to better blocking voltage scaling. This technology has yet to be realized due to the inconsistency of GaN wafer properties. These inconsistencies can be detected with several long-range, non-destructive techniques including Raman spectroscopy, optical profilometry, and photoluminescence mapping. In particular, Raman spectroscopy is an effective tool for determining the carrier concentration of GaN substrates and whether the wafers are uniform or inhomogeneous. In this work, vertical p-i-n GaN diodes are fabricated using both uniform and inhomogeneous wafers determined by using the A1 Raman peak position to monitor carrier concentration. The inhomogeneous samples have regular patterns of varying conductivity as a result of electron-donating defects brought about by changes in crystal stress. By avoiding these defects, we have found that diode performance improves by increasing the +/− 10 V rectification ratio by up to a factor of 5X and reducing the 200 V reverse bias leakage current by several orders of magnitude. Using the higher quality substrates with uniform electron carrier concentrations can improve the rectification ratio by another order of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. I.C. Kizilyalli, P. Bui-Quang, D. Disney, H. Bhatia, and O. Aktas, Microelectron. Reliab. 55, 1654 (2015).

    Article  CAS  Google Scholar 

  2. C. Mion, J.F. Muth, E.A. Preble, and D. Hanser, Appl. Phys. Lett. 89, 092123 (2006).

    Article  Google Scholar 

  3. B.N. Pushpakaran, A.S. Subburaj, and S.B. Bayne, J. Electron. Mater. 49, 6247 (2020).

    Article  CAS  Google Scholar 

  4. S.J. Pearton, Y.-S. Hwang, and F. Ren, J. Miner. Met. Mater. Soc. 67, 1601 (2015).

    Article  CAS  Google Scholar 

  5. B.D. Weaver, T.J. Anderson, A.D. Koehler, J.D. Greenlee, J.K. Hite, D.I. Shahin, F.J. Kub, and K.D. Hobart, ECS J. Solid State Sci. Technol. 5, Q208 (2016).

    Article  CAS  Google Scholar 

  6. T.J. Anderson, A.D. Koehler, J.D. Greenlee, B.D. Weaver, M.A. Mastro, J.K. Hite, C.R. Eddy, F.J. Kub, K.D. Hobart, S. Member, A.D. Koehler, J.D. Greenlee, B.D. Weaver, M.A. Mastro, J.K. Hite, C.R. Eddy, S. Member, F.J. Kub, and K.D. Hobart, IEEE Electron Dev. Lett. 35, 826 (2014).

    Article  CAS  Google Scholar 

  7. R. Kucharski, T. Sochacki, B. Lucznik, and M. Bockowski, J. Appl. Phys. 128, 050902 (2020).

    Article  CAS  Google Scholar 

  8. J.C. Gallagher, T.J. Anderson, L.E. Luna, A.D. Koehler, J.K. Hite, N.A. Mahadik, K.D. Hobart, and F.J. Kub, J. Cryst. Growth 506, 178 (2019).

    Article  CAS  Google Scholar 

  9. J.C. Gallagher, T.J. Anderson, A.D. Koehler, N.A. Mahadik, A. Nath, B.D. Weaver, K.D. Hobart, and F.J. Kub, ECS J. Solid State Sci. Technol. 6, S3060 (2017).

    Article  CAS  Google Scholar 

  10. A.D. Koehler, N. Nepal, T.J. Anderson, M.J. Tadjer, K.D. Hobart, C.R. Eddy, and F.J. Kub, IEEE Electron Dev. Lett. 34, 1115 (2013).

    Article  CAS  Google Scholar 

  11. I.C. Kizilyalli, A.P. Edwards, O. Aktas, T. Prunty, and D. Bour, IEEE Trans. Electron Dev. 62, 414 (2015).

    Article  CAS  Google Scholar 

  12. R.E. Stahlbush, K.X. Liu, Q. Zhang, and J.J. Sumakeris, Mater. Sci. Forum 556–557, 295 (2007).

    Article  Google Scholar 

  13. R.E. Stahlbush, B.L. VanMil, R.L. Myers-Ward, K.-K. Lew, D.K. Gaskill, and C.R. Eddy, Appl. Phys. Lett. 94, 041916 (2009).

    Article  Google Scholar 

  14. J.K. Hite, T.J. Anderson, L.E. Luna, J.C. Gallagher, M.A. Mastro, J.A. Freitas, and C.R. Eddy, J. Cryst. Growth 498, 352 (2018).

    Article  CAS  Google Scholar 

  15. J.K. Hite, T.J. Anderson, M.A. Mastro, L.E. Luna, J.C. Gallagher, R.L. Myers-Ward, K.D. Hobart, and C.R. Eddy, ECS J. Solid State Sci. Technol. 6, S3103 (2017).

    Article  CAS  Google Scholar 

  16. J.C. Gallagher, T.J. Anderson, A.D. Koehler, M.A. Ebrish, M.A. Mastro, J.K. Hite, K.D. Hobart, and F.J. Kub, in 2020 Int. Conf. Compd. Semicond. Manuf. Technol. (2020), pp. 207–210

  17. M.A. Ebrish, T.J. Anderson, A.D. Koehler, G.M. Foster, J.C. Gallagher, R.J. Kapalar, B.P. Gunning, and K.D. Hobart, IEEE Trans. Semicond. Manuf. 33, 546 (2020).

    Article  Google Scholar 

  18. J.K. Hite, M.A. Mastro, T.J. Anderson, J.C. Gallagher, M. Ebrish, and J.A. Freitas, ECS Trans. 98, 63 (2020).

    Article  CAS  Google Scholar 

  19. R. Dwilinski, R. Doradzinski, J. Garczynski, L.P. Sierzputowski, M. Zajac, and M. Rudzinski, J. Cryst. Growth 311, 3058 (2009).

    Article  CAS  Google Scholar 

  20. S. Suihkonen, S. Pimputkar, S. Sintonen, and F. Tuomisto, Adv. Electron. Mater. 3, 1600496 (2017).

    Article  Google Scholar 

  21. D. Ehrentraut, R.T. Pakalapati, D.S. Kamber, W. Jiang, D.W. Pocius, B.C. Downey, M. McLaurin, and M.P. D’Evelyn, Jpn. J. Appl. Phys. 52, 0801 (2013).

    Article  Google Scholar 

  22. K. Motoki, and S.E.I. Tech, Review 70, 28 (2010).

    Google Scholar 

  23. M. Kuball, Surf. Interface Anal. 31, 987 (2001).

    Article  CAS  Google Scholar 

  24. G.M. Foster, A. Koehler, M. Ebrish, J. Gallagher, T. Anderson, B. Noesges, L. Brillson, B. Gunning, K.D. Hobart, and F. Kub, Appl. Phys. Lett. 117, 082103 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M.A. Ebrish acknowledges the support of the National Research Council (NRC) Postdoctoral Fellowship program. G.M. Foster acknowledges the support of the American Society for Engineering Education Fellowship program. The authors are sincerely grateful to Anthony Boyd, Walter Spratt, and Dean St. Amand at the NRL Institute for Nanoscience for cleanroom equipment support. Work at the U.S. Naval Research Laboratory is supported by the Office of Naval Research, and work at Sandia National Laboratories is supported by the ARPA-E OPEN+ Kilovolt Devices Cohort program directed by Dr. Isik Kizilyalli. Sandia National Laboratories is a multi-program laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Gallagher.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallagher, J.C., Anderson, T.J., Koehler, A.D. et al. Effect of GaN Substrate Properties on Vertical GaN PiN Diode Electrical Performance. J. Electron. Mater. 50, 3013–3021 (2021). https://doi.org/10.1007/s11664-021-08840-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08840-9

Keywords

Navigation