Skip to main content
Log in

Magnetic and DC Electrical Properties of Cu Doped Co–Zn Nanoferrites

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

A Correction to this article was published on 14 April 2021

This article has been updated

Abstract

Cu-doped Co–Zn nanoferrites Co0.5CuxZn0.5 − xFe2O4 (x = 0.0, 0.2 and 0.4) were synthesized by sol-gel auto-combustion. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) with EDS, Fourier transform infrared (FTIR) spectroscopy, vibrating sample magnetometry (VSM), and two-probe methods were employed to study the structural, morphological, magnetic and DC electrical resistivity properties, respectively, of the prepared samples. Monotonically decreasing values of the lattice constants with the dopant concentrations were calculated. The crystallite sizes were also recorded in a decreasing pattern. The stretching bond vibrations measured by room temperature FT-IR showed characteristic absorptions in the range of 579.634–393.49 cm − 1. The magnetic parameters were observed to have a tuned value, although decreasing in a non-monotonic pattern. A higher value of the DC resistivity value was recorded for x = 0.2 concentration of the dopant, indicating the optimal concentration for synthesizing materials applicable in high-frequency microwave devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Change history

References

  1. T. Roman, R.L. Asavei, N.E. Karkalos, C. Roman, C. Virlan, N. Cimpoesu, B. Istrate, M. Zaharia, A.P. Markopoulos, K. Kordatos, S. Stanciu, and A. Pui, T. Roman, R.L. Asavei, N.E. Karkalos, C. Roman, C. Virlan, N. Cimpoesu, B. Istrate, M. Zaharia, A.P. Markopoulos, K. Kordatos, S. Stanciu, and A. Pui, Int. J. Appl. Ceram. Technol., 2019, 16, p 693.

    Article  CAS  Google Scholar 

  2. C. Virlan, R.G. Ciocarlan, T. Roman, D. Gherca, N. Cornei, and A. Pui, C. Virlan, R.G. Ciocarlan, T. Roman, D. Gherca, N. Cornei, and A. Pui, Acta Chem. Iasi., 2013, 21, p 19.

    Article  CAS  Google Scholar 

  3. E. Myrovali, N. Maniotis, A. Makridis, A. Terzopoulou, V. Ntomprougkidis, K. Simeonidis, D. Sakellari, O. Kalogirou, T. Samaras, R. Salikhov, M. Spasova, M. Farle, U. Wiedwald, and M. Angelakeris, E. Myrovali, N. Maniotis, A. Makridis, A. Terzopoulou, V. Ntomprougkidis, K. Simeonidis, D. Sakellari, O. Kalogirou, T. Samaras, R. Salikhov, M. Spasova, M. Farle, U. Wiedwald, and M. Angelakeris, Sci. Rep., 2016, 6, p 1.

    Article  CAS  Google Scholar 

  4. L. Stanciu, Y.H. Won, M. Ganesana, and S. Andreescu, L. Stanciu, Y.H. Won, M. Ganesana, and S. Andreescu, Sensors, 2009, 9, p 2976.

    Article  CAS  Google Scholar 

  5. B. Sahoo, K.S.P. Devi, S. Dutta, T.K. Maiti, P. Pramanik, and D. Dhara, B. Sahoo, K.S.P. Devi, S. Dutta, T.K. Maiti, P. Pramanik, and D. Dhara, J. Colloid Interface Sci., 2014, 431, p 31.

    Article  CAS  Google Scholar 

  6. A. Singh, S. Pathak, P. Kumar, P. Sharma, A. Rathi, G.A. Basheed, K.K. Maurya, and R.P. Pant, A. Singh, S. Pathak, P. Kumar, P. Sharma, A. Rathi, G.A. Basheed, K.K. Maurya, and R.P. Pant, J. Magn. Magn. Mater., 2020, 493, p 165737.

    Article  CAS  Google Scholar 

  7. P.H. Nam, N.X. Phuc, D.K. Tung, V.Q. Nguyen, N.H. Nam, D.H. Manh, and P.T. Phong, P.H. Nam, N.X. Phuc, D.K. Tung, V.Q. Nguyen, N.H. Nam, D.H. Manh, and P.T. Phong, Physica B Condens. Matter., 2020, 591, p 412246.

    Article  CAS  Google Scholar 

  8. V. Constantin, T. Florin, and P. Aurel, V. Constantin, T. Florin, and P. Aurel, Int. J. Appl. Ceram. Technol., 2017, 14, p 1174.

    Article  CAS  Google Scholar 

  9. A. Ramakrishna, N. Murali, T.W. Mammo, K. Samatha, and V. Veeraiah, A. Ramakrishna, N. Murali, T.W. Mammo, K. Samatha, and V. Veeraiah, Physica B Condens Matter, 2018, 534, p 134.

    CAS  Google Scholar 

  10. D. Gherca, A. Pui, V. Nica, O. Caltun, and N. Cornei, D. Gherca, A. Pui, V. Nica, O. Caltun, and N. Cornei, Ceram. Int., 2014, 40, p 9599.

    Article  CAS  Google Scholar 

  11. A.I. Popov, Z.V. Gareeva, F.A. Mazhitova, and R.A. Doroshenko, A.I. Popov, Z.V. Gareeva, F.A. Mazhitova, and R.A. Doroshenko, J. Magn. Magn Mater., 2018, 461, p 128.

    Article  CAS  Google Scholar 

  12. N. Sangeneni, K.M. Taddei, N. Bhat, and S.A. Shivashankar, N. Sangeneni, K.M. Taddei, N. Bhat, and S.A. Shivashankar, J. Magn. Magn Mater., 2018, 465, p 590.

    Article  CAS  Google Scholar 

  13. S. Lalwani, R.B. Marichi, M. Mishra, G. Gupta, G. Singh, and R.K. Sharma, S. Lalwani, R.B. Marichi, M. Mishra, G. Gupta, G. Singh, and R.K. Sharma, Electrochim. Acta., 2018, 283, p 708.

    Article  CAS  Google Scholar 

  14. L. Andjelkovic, M. Suljagic, M. Lakic, D. Jeremic, P. Vulic, and A.S. Nikolic, L. Andjelkovic, M. Suljagic, M. Lakic, D. Jeremic, P. Vulic, and A.S. Nikolic, Ceram. Int., 2018, 44, p 14163.

    Article  CAS  Google Scholar 

  15. R.G. Ciocarlan, A. Pui, D. Gherca, C. Virlan, M. Dobromir, V. Nica, M.L. Craus, I.N. Gostin, O. Caltun, R. Hempelman, and P. Cool, R.G. Ciocarlan, A. Pui, D. Gherca, C. Virlan, M. Dobromir, V. Nica, M.L. Craus, I.N. Gostin, O. Caltun, R. Hempelman, and P. Cool, Mater. Res. Bull., 2016, 81, p 63.

    Article  CAS  Google Scholar 

  16. G. Rekha, R. Tholkappiyan, K. Vishista, and F. Hamed, G. Rekha, R. Tholkappiyan, K. Vishista, and F. Hamed, Appl. Surf. Sci., 2016, 385, p 171.

    Article  CAS  Google Scholar 

  17. P. Samoila, L. Sacarescu, A.I. Borhan, D. Timpu, M. Grigoras, N. Lupu, M. Zaltariov, and V. Harabagiu, P. Samoila, L. Sacarescu, A.I. Borhan, D. Timpu, M. Grigoras, N. Lupu, M. Zaltariov, and V. Harabagiu, J. Magn. Magn Mater., 2015, 378, p 92.

    Article  CAS  Google Scholar 

  18. H.M. Zhang, Z. Wang, J.J. Pei, and Y. Gao, H.M. Zhang, Z. Wang, J.J. Pei, and Y. Gao, J. Sol. Gel Sci. Technol., 2019, 90, p 404.

    Article  CAS  Google Scholar 

  19. C. Virlan, G. Bulai, O.F. Caltun, R. Hempelmann, and A. Pui, C. Virlan, G. Bulai, O.F. Caltun, R. Hempelmann, and A. Pui, Ceram. Int., 2016, 42, p 11958.

    Article  CAS  Google Scholar 

  20. S. Qamara, M.N. Akhtar, K.M. Batoo, and E.H. Raslan, S. Qamara, M.N. Akhtar, K.M. Batoo, and E.H. Raslan, Ceram Int, 2020, 46, p 14481.

    Article  CAS  Google Scholar 

  21. M.N. Akhtar, M. Babar, S. Qamar, Z. ur Rehman, and M.A. Khan, M.N. Akhtar, M. Babar, S. Qamar, Z. ur Rehman, and M.A. Khan, Ceram Int, 2019, 45, p 10187.

    Article  CAS  Google Scholar 

  22. A. Ramakrishna, N. Murali, S.J. Margarette, T.W. Mammo, N.K. Joythi, B. Sailaja, C.C.S. Kumari, K. Samatha, and V. Veeraiah, A. Ramakrishna, N. Murali, S.J. Margarette, T.W. Mammo, N.K. Joythi, B. Sailaja, C.C.S. Kumari, K. Samatha, and V. Veeraiah, Adv Powder Technol, 2018, 29, p 2601.

    Article  CAS  Google Scholar 

  23. G. Raju, N. Murali, M.S.N.A. Prasad, B. Suresh, D.A. Babu, M.G. Kiran, A. Ramakrishna, M.T. Wegayehu, and B.K. Babu, G. Raju, N. Murali, M.S.N.A. Prasad, B. Suresh, D.A. Babu, M.G. Kiran, A. Ramakrishna, M.T. Wegayehu, and B.K. Babu, Mater. Sci. Energy Technol., 2019, 2, p 78.

    Google Scholar 

  24. D.L. Navgare, V.B. Kawade, U.B. Tumberphale, S.S. Jadhav, R.S. Mane, and S.K. Gore, D.L. Navgare, V.B. Kawade, U.B. Tumberphale, S.S. Jadhav, R.S. Mane, and S.K. Gore, J. Sol-Gel Sci. Technol., 2020, 93, p 633.

    Article  CAS  Google Scholar 

  25. T.W. Mammo, C.V. Kumari, S.J. Margarette, A. Ramakrishna, R. Vemuri, Y.B. Shankar Rao, K.L.V. Prasad, Y. Ramakrishna, and N. Murali, T.W. Mammo, C.V. Kumari, S.J. Margarette, A. Ramakrishna, R. Vemuri, Y.B. Shankar Rao, K.L.V. Prasad, Y. Ramakrishna, and N. Murali, Phys. B Condens. Matter, 2020, 581, p 411769.

    Article  CAS  Google Scholar 

  26. A.B. Mugutkar, S.K. Gore, R.S. Mane, K.M. Batoo, S.F. Adil, and S.S. Jadhav, A.B. Mugutkar, S.K. Gore, R.S. Mane, K.M. Batoo, S.F. Adil, and S.S. Jadhav, Ceram. Int., 2018, 44, p 21675.

    Article  CAS  Google Scholar 

  27. M.A. Almessiere, M.A. Almessiere, J. Rare Earth., 2019, 37, p 1108.

    Article  CAS  Google Scholar 

  28. A. Ramakrishna, N. Murali, S.J. Margarette, K. Samatha, and V. Veeraiah, A. Ramakrishna, N. Murali, S.J. Margarette, K. Samatha, and V. Veeraiah, Phys. B Condens. Matter., 2018, 530, p 251.

    Article  CAS  Google Scholar 

  29. D.R. Mane, D.D. Birajdar, S. Patil, S.E. Shirsath, and R.H. Kadam, D.R. Mane, D.D. Birajdar, S. Patil, S.E. Shirsath, and R.H. Kadam, J. Sol–Gel Sci. Technol., 2011, 58, p 70.

    Article  CAS  Google Scholar 

  30. T.W. Mammo, N. Murali, Y.M. Sileshi, and T. Arunamani, T.W. Mammo, N. Murali, Y.M. Sileshi, and T. Arunamani, Phys. B Condens. Matter, 2018, 531, p 164.

    Article  CAS  Google Scholar 

  31. A.B. Mugutkar, S.K. Gore, R.S. Mane, S.M. Patange, S.S. Jadhav, S.F. Shaikh, A.M. Al-Enizi, A. Nafady, B.M. Thamer, and M. Ubaidullah, A.B. Mugutkar, S.K. Gore, R.S. Mane, S.M. Patange, S.S. Jadhav, S.F. Shaikh, A.M. Al-Enizi, A. Nafady, B.M. Thamer, and M. Ubaidullah, J. Alloys Compd, 2020, 844, p 156178.

    Article  CAS  Google Scholar 

  32. B.K. Labde, M.C. Sable, and N.R. Shamkuwar, B.K. Labde, M.C. Sable, and N.R. Shamkuwar, Mater. Lett., 2003, 57, p 1651.

    Article  CAS  Google Scholar 

  33. N.H. Kumar, G. Aravind, D. Ravinder, T. Somaiah, and B.R. Reddy, N.H. Kumar, G. Aravind, D. Ravinder, T. Somaiah, and B.R. Reddy, Int. J. Eng. Res. Appl., 2014, 4, p 137.

    Google Scholar 

  34. M. AsifIqbal, M. Islam, I. Ali, M.A. Khan, S.M. Ramay, M.H. Khan, and M.K. Mehmood, M. AsifIqbal, M. Islam, I. Ali, M.A. Khan, S.M. Ramay, M.H. Khan, and M.K. Mehmood, J. Alloy. Comp., 2017, 692, p 322.

    Article  CAS  Google Scholar 

  35. Y. Li, R. Liu, Z. Zhang, and C. Xiong, Y. Li, R. Liu, Z. Zhang, and C. Xiong, Mater. Chem. Phys., 2000, 64, p 256.

    Article  CAS  Google Scholar 

  36. A. Monshi, M.R. Foroughi, and M.R. Monshi, A. Monshi, M.R. Foroughi, and M.R. Monshi, World J. Nano Sci. Eng., 2012, 2, p 154.

    Article  CAS  Google Scholar 

  37. S. Morup, E. Brok, and C. Frandsen, S. Morup, E. Brok, and C. Frandsen, J. Nanomater., 2013, 2013, p 720629.

    Article  CAS  Google Scholar 

  38. A.H.E. Foulani, A. Aamouche, F. Mohseni, J.S. Amaral, D.M. Tobaldi, and R.C. Pullar, A.H.E. Foulani, A. Aamouche, F. Mohseni, J.S. Amaral, D.M. Tobaldi, and R.C. Pullar, J. Alloys Compd., 2019, 774, p 1250.

    Article  CAS  Google Scholar 

  39. A. Samokhralov, and A.G. Rustmov, A. Samokhralov, and A.G. Rustmov, Sov. Phys. Solid State., 1965, 7, p 961.

    Google Scholar 

  40. S.S. Abbas, I.H. Gul, S. Ameer, and M. Anees, S.S. Abbas, I.H. Gul, S. Ameer, and M. Anees, Electron. Mater. Lett., 2015, 11, p 100.

    Article  CAS  Google Scholar 

  41. B.B.V.S. Vara. Prasad, K.V. Ramesh, and A. Sinivas, B.B.V.S. Vara. Prasad, K.V. Ramesh, and A. Sinivas, Mater. Sci.Poland, 2019, 37, p 39.

    Article  CAS  Google Scholar 

  42. B. Shinde, B. Shinde, Int. J. Res. Eng. Appl. Sci., 2016, 6, p 75.

    Google Scholar 

  43. S.A. Mazen, and N.I. Abu-Elsaad, S.A. Mazen, and N.I. Abu-Elsaad, Appl. Nanosci., 2015, 5, p 105.

    Article  CAS  Google Scholar 

  44. D.S. Kumar, and K.C. Mouli, D.S. Kumar, and K.C. Mouli, Int. J. Nanotechnol. Appl., 2010, 4, p 51.

    Google Scholar 

Download references

Acknowledgement

Author K M Batoo is thankful to Scientific Research's Deanship at King Saud University for financial support through the project Code (RG-1437-030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Murali or Khalid Mujasam Batoo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Khalid Mujasam Batoo’s, Muhammad Hadi’s, and Emad H. Raslan’s names were corrected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Himakar, P., Murali, N., Parajuli, D. et al. Magnetic and DC Electrical Properties of Cu Doped Co–Zn Nanoferrites. J. Electron. Mater. 50, 3249–3257 (2021). https://doi.org/10.1007/s11664-021-08760-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08760-8

Keywords

Navigation