Skip to main content
Log in

Effect of Cu substitution on magnetic and DC electrical resistivity properties of Ni–Zn nanoferrites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cu-substituted Ni0.5Zn0.5-xCuxFe2O4 (x = 0, 0.1, 0.2, 0.3 and 0.4) ferrites were prepared from sol–gel auto-combustion technique. XRD, FESEM, FTIR, VSM, and DC resistivity probes were used for their structural, morphological, compositional, magnetic, and electrical properties characterization. They all have cubic spinel structures with their lattice constant decreasing with Cu doping. The range of 42.68 to 21.75 nm was their crystallite sizes. The range of the wavenumbers in tetrahedral and octahedral sites approves their spinel structures. Their dc resistivity was increased with conductive copper concentration, which further shows the semiconducting nature with respect to the temperature. They are found to be of isotropic and ferromagnetic nature used widely in daily electromagnetic purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G.S.V.R.K. Choudary, P. Prameela, M. Chaitanya Varma, A. Mahesh Kumar, K.H. Rao, Indian J. Mater. Sci. 2013, 7 (2013)

  2. A.R. Dehghani-Sanij, S.R. Dehghani, G.F. Naterer, Y.S. Muzychka, Ocean Eng. 143, 1–23 (2017)

    Article  Google Scholar 

  3. A.R. Dehghani-Sanij, M. Soltani, K. Raahemifar, Renew. Sustain. Energy Rev. 42, 182–195 (2015)

    Article  Google Scholar 

  4. A.R. Dehghani-Sanij, E. Tharumalingam, M.B. Dusseault, R. Fraser, Renew. Sustain. Energy Rev. 104, 192–208 (2019)

    Article  Google Scholar 

  5. Y. Liu, Z. Yang, J. Yan, J. Electro Chem. Soc. 163(14), 3146–3151 (2016)

    Article  CAS  Google Scholar 

  6. K. Vijaya Kumar, D. Paramesh, P. Venkat Reddy, World J. Nano Sci. Eng. 5, 68–77 (2015)

    Article  Google Scholar 

  7. D. Parajuli, K. Samatha, Structural analysis of Cu substituted Ni\Zn in Ni–Zn Ferrite. Bibechana 18(1), 128–133 (2021)

    Article  Google Scholar 

  8. H. Harzali, F. Saida, A. Marzouki, A. Megriche, F. Baillon, F. Espitalier, A. Mgaidi, J. Magn. Magn. Mater. 419, 50–56 (2016)

    Article  CAS  Google Scholar 

  9. R. Anthony, N. Wang, D.P. Casey, C. Mathúna, J.F. Rohan, J. Magn. Magn. Mater. 406, 89–94 (2016)

    Article  CAS  Google Scholar 

  10. B.D. Cullity, Elements of X-ray diffraction (Addison Wesley Publication, Reading, 1956)

  11. A.C.F.M. Costa, A.M.D. Leite, H.S. Ferreira, R.H.G. A.Kiminami, S. Cavac, L. Gama, J. Eur. Ceram. Soc. 28, 2033–2037 (2008)

    Article  CAS  Google Scholar 

  12. C. Nlebedim, K.W. Dennis, R.W. McCallum, D.C. Jiles, J. Appl. Phys. 115, 17A519 (2014)

    Article  CAS  Google Scholar 

  13. C.G.C.M. Netto, H.E. Toma, L.H. Andrade, J. Mol. Catal. B  85–86, 71–92 (2013)

    Article  CAS  Google Scholar 

  14. F. Guo, Z. Fang, C.C. Xu Jr., R.L. Smith, Prog. Energy Combust. Sci. 38(5), 672–690 (2012)

    Article  CAS  Google Scholar 

  15. D. Venkatesh, K.V. Ramesh, Mod. Phys. Lett. B 31, 1750318 (2017)

    Article  CAS  Google Scholar 

  16. H. Jing, X. Wang, Y. Liu, A. Wang Chin, J. Catal. 36(2), 244–251 (2015)

    CAS  Google Scholar 

  17. M.N. Akhtar, M.A. Khan, M. Ahmad, M.S. Nazir, M. Imran, A. Ali, J. Magn. Magn. Mater. 421, 260–268 (2017)

    Article  CAS  Google Scholar 

  18. M. Houshiar, L. Jamilpanah, Mater. Res. Bull. 98, 213–2018 (2018)

    Article  CAS  Google Scholar 

  19. M.M. Ambursa, T.H. Ali, H.V. Lee, P. Sudarsanam, S.K. Bhargava, S.B.A. Hamid, Fuel. 180, 767–776 (2016)

    Article  CAS  Google Scholar 

  20. Y. Li, C. Zhang, Y. Liu, S. Tang, G. Chen, R. Zhang et al., Fuel. 189, 23–31 (2017)

    Article  CAS  Google Scholar 

  21. S.R. Jain, K.C. Adiga, V.P. Verneker, Combust. Flame 407, 1–9 (1981)

    Google Scholar 

  22. H. Klung, L. Alexander. New York: Wiley (1962)

  23. N. Murali, S. Margarette, G.P. Kumar, B. Sailaja, S.Y. Mulushoa, P. Himakar, B.K. Babu, V. Veeraiah, Physica B 522, 1–6 (2017)

  24. J.S. Reed, New York: Wiley (1996)

  25. S. Gangothri, T. Kumar, K. Raguram, S. Rajni, J. Supercond. Nov. Magn. 32, 1715–1723 (2019)

    Article  CAS  Google Scholar 

  26. G. Aravind, M. Raghasudha, D. Ravinder, R.V. Kumar, J. Magn. Magn. Mater. 406, 110–117 (2016)

    Article  CAS  Google Scholar 

  27. S. Kumar, P. Kumar, V. Singh, U.K. Mandal, R.K. Kotnala, J. Magn. Magn. Mater. 379, 50–57 (2015)

    Article  CAS  Google Scholar 

  28. V.G. Andreev, S.B. Menshova, A.N. Klimov, R.M. Vergazov, J. Magn. Magn. Mater. 393, 569–573 (2015)

    Article  CAS  Google Scholar 

  29. K.M. Batoo, M.S. Ansari, Nanoscale Res. Lett. 7(1), 1–14 (2012)

    Article  Google Scholar 

  30. A. Ramakrishna, N. Murali, S.J. Margarette, K. Samatha, V. Veeraiah, Physica B 530, 251–257 (2018)

    Article  CAS  Google Scholar 

  31. A. Ramakrishna, N. Murali, S.J. Margarette, T.W. Mammo, N.Krishna Joythi, B.Sailaja,ChC.Sailaja Kumari, K. Samatha, V.Veeraiah, Adv. Powder Technol. 29, 2601–2607 (2018)

    Article  CAS  Google Scholar 

  32. A. Ramakrishna, N. Murali, T.W. Mammo, K. Samatha, V. Veeraiah, Physica B 534, 134–140 (2018)

    Article  CAS  Google Scholar 

  33. J. Mercy, D. Shaik, N. Parajuli, A. Murali, Y. Ramakrishna, V. Ramakrishna, K. Samatha Appl. Phys. A 127 (2), 1–13 (2021)

  34. S. Yonatan Mulushoa, N. Murali, M. Tulu Wegayehu, S.J. Margarette, K. Samatha, Results Phys. 8, 772–779 (2018)

    Article  Google Scholar 

  35. T. Mammo, C.V. Wegayehu, S.J. Kumari, A. Margarette, R. Ramakrishna, Y.B. Vemuri, K.L. Shankar Rao, Y. Vijaya Prasad, Ramakrishna, N. Murali, Physica B 581, 411769 (2020)

    Article  CAS  Google Scholar 

  36. N. Tulu Wegayehu Mammo, Y.M. Murali, T. Sileshi, Arunamani, Phys. B 531, 164–170 (2018)

    Article  CAS  Google Scholar 

  37. G. Vemuri, Raghavendra, M. Raju, M.S.N.A. Gnana Kiran, E. Prasad, G. Rajesh, Pavan Kumar, N. Murali, Results in Physics 12, 947–952 (2019)

    Article  Google Scholar 

  38. P. Himakar, N. Murali, D. Parajuli, V. Veeraiah, K. Samatha, T.W. Mammo, K.M. Batoo, M. Hadi, E.H. Raslan, S.F. Adil, J. Electron. Mater. (2021). https://doi.org/10.1007/s11664-021-08895-8

    Article  Google Scholar 

  39. P. Himakar, K. Jayadev, D. Parajuli, N. Murali, P. Taddesse, SYonatan Mulushoa, V. Veeraiah, K. Samatha et al., Appl. Phys. A 127, 371 (2021)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Murali.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandramouli, K., Rao, P.A., Suryanarayana, B. et al. Effect of Cu substitution on magnetic and DC electrical resistivity properties of Ni–Zn nanoferrites. J Mater Sci: Mater Electron 32, 15754–15762 (2021). https://doi.org/10.1007/s10854-021-06127-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06127-7

Navigation