Skip to main content
Log in

Zeolitic Imidazolate Frameworks-Derived Activated Carbon As Electrode Material for Lithium-Sulfur Batteries and Lithium-Ion Batteries

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Zeolitic imidazolate framework-derived carbon (ZC) material and ZC-sulfur (ZC-S) composite were prepared successfully via a solution method accompanied by facile carbonization and subsequent sulfur impregnation. The ZC and ZC-S materials kept the basic polyhedral morphology of the zeolitic imidazolate framework crystals. Sulfur is homogeneously distributed over and in the ZC porous matrix with a 51.0% sulfur mass content in ZC-S composite. The ZC material exhibits good electrochemical performances in lithium-ion batteries. After 100 cycles at 0.1 A g−1, a reversible discharge capacity of 619 mAh g−1 is still retained, which is benefitted by the micro/mesopores and specific surface area of the synthesized ZC material. When integrated into lithium-sulfur batteries as a cathode, the ZC-S composite exhibits stable discharge capacity of 850 mAh g−1 after 100 cycles at 0.1 C (1 C = 1670 mA g−1). The increased electrochemical properties of the ZC-S electrode compared to the pristine S electrode may be attributed to the advantageous effects of the ZC porous matrix, which serve as a conductive frame promoting electron and lithium ion transportation and provide abundant active sites to increase electrochemical activity and ensnare soluble polysulfides efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Armand and J.-M. Tarascon, Nature 451, 652 (2008).

    CAS  Google Scholar 

  2. S. Evers and L.F. Nazar, Acc. Chem. Res. 46, 1135 (2013).

    CAS  Google Scholar 

  3. L. Ma, K.E. Hendrickson, S. Wei, and L.A. Archer, Nano Today 10, 315 (2015).

    CAS  Google Scholar 

  4. A. Manthiram, Y. Fu, and Y.-S. Su, Acc. Chem. Res. 45, 1125 (2013).

    Google Scholar 

  5. S.H. Chung, C.H. Chang, and A. Manthiram, Energy Environ. Sci. 9, 3188 (2016).

    CAS  Google Scholar 

  6. A. Eftekhari and D.-W. Kim, J. Mater. Chem. A 5, 17734 (2017).

    CAS  Google Scholar 

  7. Z. Yuan, H.J. Peng, J.Q. Huang, X.Y. Liu, D.W. Wang, X.B. Cheng, and Q. Zhang, Adv. Funct. Mater. 24, 6105 (2014).

    CAS  Google Scholar 

  8. J.H. Kim, K. Fu, J. Choi, S. Sun, J. Kim, L. Hu, and U. Paik, Chem. Commun. 51, 13682 (2015).

    CAS  Google Scholar 

  9. W. Su, W. Feng, S. Wang, L. Chen, M. Li, and C. Song, J. Solid State Electrochem. 23, 2097 (2019).

    CAS  Google Scholar 

  10. L. Chen, C. Xu, L. Yang, M. Zhou, B. He, Z. Chen, Z. Li, M. Shi, and Y. Kuang, Appl. Surf. Sci. 454, 284 (2018).

    CAS  Google Scholar 

  11. J. Guo, M. Zhang, X. Yan, S. Yao, X. Cao, and J. Liu, J. Nanopart. Res. 21, 70 (2019).

    Google Scholar 

  12. L. Fei, X. Li, W. Bi, Z. Zhuo, W. Wei, L. Sun, W. Lu, X. Wu, K. Xie, C. Wu, H.L. Chan, and Y. Wang, Adv. Mater. 27, 5936 (2015).

    CAS  Google Scholar 

  13. X. Liang, M. Zhang, M.R. Kaiser, X. Gao, K. Konstantinov, R. Tandiono, and J. Wang, Nano Energy 11, 587 (2015).

    CAS  Google Scholar 

  14. Y. Xie, H. Zhao, H. Cheng, C. Hu, W. Fang, J. Fang, and Z. Chen, Appl. Energy 175, 522 (2016).

    CAS  Google Scholar 

  15. A. Konarov, D. Gosselink, T.N.L. Doan, Y. Zhang, Y. Zhao, and P. Chen, J. Power Sources 259, 183 (2014).

    CAS  Google Scholar 

  16. B. Liu, S. Huang, J. Hu, D. Kong, and H.Y. Yang, J. Mater. Chem. A 7, 7604 (2019).

    CAS  Google Scholar 

  17. Z. Yuan, H. Peng, T. Hou, J. Huang, C. Chen, D. Wang, X. Cheng, F. Wei, and Q. Zhang, Nano Lett. 16, 519 (2016).

    CAS  Google Scholar 

  18. X. Lv, W. Wei, H. Yang, J. Li, B. Huang, and Y. Dai, Chemistry 24, 11193 (2018).

    CAS  Google Scholar 

  19. F. Ma, J. Liang, T. Wang, X. Chen, Y. Fan, and B. Hultman, Nanoscale 10, 499 (2018).

    Google Scholar 

  20. G. Yuan, H. Jin, Y. Jin, and L. Wu, J. Solid State Electrochem. 22, 693 (2018).

    CAS  Google Scholar 

  21. S. Li, Y. Cen, Q. Xiang, M.K. Aslam, B. Hu, W. Li, T. Ya, Y. Qi, Y. Liu, and C. Chen, J. Mater. Chem. A 7, 1658 (2019).

    CAS  Google Scholar 

  22. H. Jiang, B. Liu, Y.-Q. Lan, K. Kuratani, T. Akita, H. Shioyama, F. Zong, and Q. Xu, J. Am. Chem. Soc. 133, 11854 (2011).

    CAS  Google Scholar 

  23. H. Jiang, X.C. Liu, Y. Wu, Y. Shu, and H. Deng, Angew. Chem. Int. Ed. 57, 3916 (2018).

    CAS  Google Scholar 

  24. Y. Mao, G. Li, Y. Guo, and Y. Li, Nat. Commun. 8, 14628 (2017).

    Google Scholar 

  25. H. Park and D. Siegel, Chem. Mater. 29, 4932 (2018).

    Google Scholar 

  26. L.H. Wee, N. Janssens, S.P. Sree, C. Wiktor, E. Gobechiya, R.A. Fischer, C.E.A. Kirschhock, and J.A. Martens, Nanoscale 6, 2056 (2014).

    CAS  Google Scholar 

  27. K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O’Keeffe, and O.M. Yaghi, PNAS 103, 10186 (2006).

    CAS  Google Scholar 

  28. G. Yuan, G. Wang, H. Wang, and J. Bai, J. Solid State Electrochem. 19, 1143 (2015).

    CAS  Google Scholar 

  29. Z. Wang, Z. Dou, Y. Cui, Y. Yang, Z. Wang, and G. Qian, Micropor. Mesopor. Mater. 185, 92 (2014).

    CAS  Google Scholar 

  30. A. Phan, C.J. Doonan, F.J. Uribe-Romo, C.B. Knobler, M. O’Keeffe, and O.M. Yaghi, Acc. Chem. Res. 43, 58 (2009).

    Google Scholar 

  31. M. Endo, K. Takeuchi, T. Hiroka, T. Furuta, T. Kasai, X. Sun, C.H. Kiang, and M.S. Dresselhaus, J. Phys. Chem. Solids 58, 1707 (1997).

    CAS  Google Scholar 

  32. B. Wang, G. Wang, and H. Wang, J. Mater. Chem. A 3, 17403 (2015).

    CAS  Google Scholar 

  33. X. Li, Q. Sun, J. Liu, B. Xiao, R. Li, and X. Sun, J. Power Sources 302, 174 (2016).

    CAS  Google Scholar 

  34. Y. Jiang, H. Liu, X. Tan, L. Guo, J. Zhang, S. Liu, W. Chu, and A.C.S. Appl, Mater. Inter. 9, 25239 (2017).

    CAS  Google Scholar 

  35. W. Chaikittisilp, M. Hu, H. Wang, H.-S. Huang, T.K.C. Fujita, W. Wu, L.-C. Chen, Y. Yamauchi, and K. Ariga, Chem. Commun. 48, 7259 (2012).

    CAS  Google Scholar 

  36. Z. Wang, Y. Dong, H. Li, Z. Zhao, H. Wu, C. Hao, S. Liu, J. Qiu, and X. Lou, Nat. Commun. 5, 5002 (2014).

    CAS  Google Scholar 

  37. W. Xiong, Z. Wang, J. Zhang, C. Shang, M. Yang, L. He, and Z. Lu, Energy Storage Mater. 7, 229 (2017).

    Google Scholar 

  38. W. Xiong, J. Zhang, Y. Xiao, Y. Zhu, Z. Wang, and Z. Lu, Chem. Commun. 56, 3433 (2020).

    CAS  Google Scholar 

  39. G. Wang, H. Wang, S. Cai, J. Bai, Z. Ren, and J. Bai, J. Power Sources 239, 37 (2013).

    CAS  Google Scholar 

  40. D. Aurbach, J. Power Sources 119, 497 (2003).

    Google Scholar 

  41. J. Kim, D.J. Lee, H.G. Jung, Y.K. Sun, J. Hassoun, and B. Scrosati, Adv. Funct. Mater. 23, 1076 (2013).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude for the financial support provided by the Natural Science Foundation of Shaanxi Province (No. 2019JM-229 and 2019JM-501), the Industrial Projects Foundation of Ankang Science and Technology Bureau (No. 2018AK01-12), the Innovation Team Foundation of Ankang University (No. 2019AYQJ10), and the National Undergraduate Training Program for Innovation and Entrepreneurship (Nos. 201911397003 and 201911397006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guanghui Yuan or Qiong Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, G., Cao, R., Geng, M. et al. Zeolitic Imidazolate Frameworks-Derived Activated Carbon As Electrode Material for Lithium-Sulfur Batteries and Lithium-Ion Batteries. J. Electron. Mater. 49, 6156–6164 (2020). https://doi.org/10.1007/s11664-020-08378-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08378-2

Keywords

Navigation