Skip to main content
Log in

Long Wavelength InAs/InAsSb Infrared Superlattice Challenges: A Theoretical Investigation

  • Topical Collection: U.S. Workshop on Physics and Chemistry of II-VI Materials 2019
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

InAs/InAsSb type-II superlattice focal plane arrays that demonstrate high operability and uniformity with cutoffs ranging from 5 μm to 13 μm have already been demonstrated. Compared to InAs/GaSb, the InAs/InAsSb superlattice is easier to grow and has longer minority carrier lifetimes, but requires a longer superlattice period to achieve long or very long wavelength cutoffs. A longer type-II superlattice period leads to smaller absorption coefficients and larger growth-direction hole conductivity effective masses. We explore by theoretical modeling some of the ideas aimed at addressing these challenges for the long and very long wavelength InAs/InAsSb superlattice. Increasing the Sb fraction in the InAsSb alloy can reduce the InAs/InAsSb superlattice period significantly, but this benefit can be negated by Sb segregation. Thin AlAsSb barrier layers can be inserted in InAs/InAsSb to form polytype W, M, and N superlattices in order to increase electron–hole wavefunction overlap for stronger optical absorption. However, this strategy can be unfavorable since the AlAsSb barriers increase the band gap, and thereby increase the superlattice period required to reach a given cutoff wavelength. Metamorphic growth on virtual substrates with larger lattice constants than GaSb can decrease the superlattice period needed to reach a specified cutoff wavelength, but this benefit should be weighed against the need for metamorphic buffer growth and the resulting higher defect density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.Z. Ting, A. Soibel, A. Khoshakhlagh, S.A. Keo, S.B. Rafol, A.M. Fisher, C.J. Hill, E.M. Luong, B.J. Pepper, and S.D. Gunapala, in SPIE Proceedings, Infrared Technology and Applications XLV, vol. 11002, p. 110020F (2019).

  2. D.Z. Ting, A. Soibel, A. Khoshakhlagh, S.A. Keo, S.B. Rafol, L. Höglund, E.M. Luong, A.M. Fisher, C.J. Hill, and S.D. Gunapala, J. Electron. Mater. 48, 6145 (2019).

    CAS  Google Scholar 

  3. D.Z. Ting, A. Soibel, A. Khoshakhlagh, S.B. Rafol, S.A. Keo, L. Höglund, A.M. Fisher, E.M. Luong, and S.D. Gunapala, Appl. Phys. Lett. 113, 021101 (2018).

    Google Scholar 

  4. D.Z. Ting, S.B. Rafol, K.A. Sam, J. Nguyen, A. Khoshakhlagh, A. Soibel, L. Höglund, A.M. Fisher, E.M. Luong, J.M. Mumolo, J.K. Liu, and S.D. Gunapala, IEEE Photonics J. 10, 6804106 (2018).

    CAS  Google Scholar 

  5. M. Vuillermet, L. Rubaldo, F. Chabuel, C. Pautet, J.C. Terme, L. Mollard, J. Rothman, and N. Baier, in SPIE Proceedings Infrared Technology and Applications XXXVII, vol. 8012, p. 80122W (2011).

  6. P. Klipstein, D. Aronov, Mb Ezra, I. Barkai, E. Berkowicz, M. Brumer, R. Fraenkel, A. Glozman, S. Grossman, E. Jacobsohn, O. Klin, I. Lukomsky, L. Shkedy, I. Shtrichman, N. Snapi, M. Yassen, and E. Weiss, Infrared Phys. Technol. 59, 172 (2013).

    CAS  Google Scholar 

  7. D.Z. Ting, A. Khoshakhlagh, A. Soibel, C.J. Hill, and S.D. Gunapala, U. S. Patent No. 8,217,480 (2012).

  8. E.H. Steenbergen, B.C. Connelly, G.D. Metcalfe, H. Shen, M. Wraback, D. Lubyshev, Y. Qiu, J.M. Fastenau, A.W.K. Liu, S. Elhamri, O.O. Cellek, and Y.-H. Zhang, Appl. Phys. Lett. 99, 251110 (2011).

    Google Scholar 

  9. B.V. Olson, E.A. Shaner, J.K. Kim, J.F. Klem, S.D. Hawkins, L.M. Murray, J.P. Prineas, M.E. Flatté, and T.F. Boggess, Appl. Phys. Lett. 101, 092109 (2012).

    Google Scholar 

  10. L. Höglund, D.Z. Ting, A. Khoshakhlagh, A. Soibel, C.J. Hill, A. Fisher, S. Keo, and S.D. Gunapala, Appl. Phys. Lett. 103, 221908 (2013).

    Google Scholar 

  11. D. Donetsky, S.P. Svensson, L.E. Vorobjev, and G. Belenky, Appl. Phys. Lett. 95, 212104 (2009).

    Google Scholar 

  12. P.C. Klipstein, Y. Livneh, A. Glozman, S. Grossman, O. Klin, N. Snapi, and E. Weiss, J. Electron. Mater. 43, 2984 (2014).

    CAS  Google Scholar 

  13. I. Vurgaftman, G. Belenky, Y. Lin, D. Donetsky, L. Shterengas, G. Kipshidze, W.L. Sarney, and S.P. Svensson, Appl. Phys. Lett. 108, 222101 (2016).

    Google Scholar 

  14. D.Z. Ting, A. Soibel, and S.D. Gunapala, Appl. Phys. Lett. 108, 183504 (2016).

    Google Scholar 

  15. D.Z. Ting, A. Soibel, and S.D. Gunapala, Infrared Phys. Technol. 84, 102 (2017).

    CAS  Google Scholar 

  16. Y.-C. Chang, Phys. Rev. B 37, 8215 (1988).

    CAS  Google Scholar 

  17. X. Cartoixà, D.Z.-Y. Ting, and T.C. McGill, Phys. Rev. B 68, 235319 (2003).

    Google Scholar 

  18. I. Vurgaftman, J.R. Meyer, and L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).

    CAS  Google Scholar 

  19. A.J. Ciani, C.H. Grein, B. Irick, M.S. Miao, and N. Kioussis, Opt. Eng. 56, 091609 (2017).

    Google Scholar 

  20. H.J. Haugan, G.J. Brown, and J.A. Peoples, J. Vac. Sci. Technol. B 35, 02B107 (2017).

    Google Scholar 

  21. W.L. Sarney, S.P. Svensson, M.K. Yakes, Y. Xu, D. Donetsky, and G. Belenky, J. Appl. Phys. 124, 035304 (2018).

    Google Scholar 

  22. K. Kanedy, F. Lopez, M.R. Wood, C.F. Gmachl, M. Weimer, J.F. Klem, S.D. Hawkins, E.A. Shaner, and J.K. Kim, Appl. Phys. Lett. 112, 042105 (2018).

    Google Scholar 

  23. L. Esaki, L.L. Chang, and E.E. Mendez, Jpn. J. Appl. Phys. 20, L529 (1981).

    CAS  Google Scholar 

  24. C.L. Canedy, E.H. Aifer, I. Vurgaftman, J.G. Tischler, J.R. Meyer, J.H. Warner, and E.M. Jackson, J. Electron. Mater. 36, 852 (2007).

    CAS  Google Scholar 

  25. P.Y. Delaunay, B.M. Nguyen, D. Hoffman, E.K.W. Huang, and M. Razeghi, IEEE J. Quantum Electron. 45, 157 (2009).

    CAS  Google Scholar 

  26. O. Salihoglu, A. Muti, K. Kutluer, T. Tansel, R. Turan, Y. Ergun, and A. Aydinli, Appl. Phys. Lett. 101, 073505 (2012).

    Google Scholar 

  27. N. Baril, A. Brown, P. Maloney, M. Tidrow, D. Lubyshev, Y. Qiu, J.M. Fastenau, A.W.K. Liu, and S. Bandara, Appl. Phys. Lett. 109, 122104 (2016).

    Google Scholar 

  28. G. Kipshidze, T. Hosoda, W.L. Sarney, L. Shterengas, and G. Belenky, IEEE Photon Technol. Lett. 23, 317 (2011).

    CAS  Google Scholar 

  29. D. Wang, Y. Lin, D. Donetsky, L. Shterengas, G. Kipshidze, G. Belenky, W.L. Sarney, H. Hier, and S.P. Svensson, in SPIE Proceedings Infrared Technology and Applications XXXVIII, vol. 8353, p. 835312 (2012).

Download references

Acknowledgments

The authors would like to thank S. Bandara, Y. Wei, R. Q. Yang, A. W. K. Liu, A. J. Ciani, and C. H. Grein for helpful discussions. The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Z. Ting.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ting, D.Z., Khoshakhlagh, A., Soibel, A. et al. Long Wavelength InAs/InAsSb Infrared Superlattice Challenges: A Theoretical Investigation. J. Electron. Mater. 49, 6936–6945 (2020). https://doi.org/10.1007/s11664-020-08349-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08349-7

Keywords

Navigation