Skip to main content
Log in

Catalyst-Free Growth of MoS2 Nanorods Synthesized by Dual Pulsed Laser-Assisted Chemical Vapor Deposition and Their Structural, Optical and Electrical Properties

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Molybdenum disulfide (MoS2) nanorods (NRs) were synthesized from bulk MoS2 using laser-assisted chemical vapor deposition. A q-switched Nd:YAG laser with combined beam wavelengths of 1064 nm and 532 nm was used to ablate a solid MoS2 target. A vapor–solid process at a furnace temperature of 1000°C was found to support the growth of MoS2 NRs without the need for any metal catalyst. Powder x-ray diffraction analysis (PXRD), field emission scanning electron microscopy, high-resolution transmission electron microscopy, Raman spectroscopy, and ultraviolet–visible (UV–Vis) and photoluminescence (PL) spectroscopy were used to characterize the structural and optical properties of MoS2 NRs. The PXRD revealed the crystallinity and phase purity of the as-synthesized NRs, while electron microscopy showed that MoS2 NRs had lengths in the range of 0.5–1.2 μm and widths between 40 nm and 160 nm. UV–Vis absorption spectra exhibited broad absorption, and PL measurements showed a sharp emission peak at 379 nm. Tauc plot calculations determined that the MoS2 NRs showed a direct transition. The electrical conductivity of the NRs was found to be 317.95 S/cm. In comparison with the MoS2 nanoparticles, the MoS2 NRs showed higher conductivity due to the in-plane electron transport, which is higher in NRs.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Nature 354, 56 (1991).

    CAS  Google Scholar 

  2. A. Dalui, A.H. Khan, B. Pradhan, S. Ghosh, and S. Acharya, Materials Nanoarchitectonics, ed. K. Ariga and M. Ebara (Weinheim: Wiley, 2018), p. 33.

    Google Scholar 

  3. J.Y. Cheng, F. Zhang, V.P. Chuang, A.M. Mayes, and C.A. Ross, Nano Lett. 6, 2099 (2006).

    CAS  Google Scholar 

  4. J. Weber, R. Singhal, S. Zekri, and A. Kumar, Int. Mater. Rev. 53, 235 (2008).

    CAS  Google Scholar 

  5. S. Ichi Sawada and N. Hamada, Solid State Commun. 83, 917 (1992).

    Google Scholar 

  6. N. Hamada, Mater. Sci. Eng. B 19, 181 (1993).

    Google Scholar 

  7. H. Gao, F. Hou, X. Zheng, J. Liu, A. Guo, D. Yang, and Y. Gong, Vacuum 112, 1 (2015).

    CAS  Google Scholar 

  8. M.A. Siddiqui, R. Wahab, J. Ahmad, N.N. Farshori, J. Musarrat, and A.A. Al-Khedhairy, Vacuum 146, 578 (2017).

    CAS  Google Scholar 

  9. L. Cao, MRS Bull. 40, 592 (2015).

    CAS  Google Scholar 

  10. Z. Hu, Z. Wu, C. Han, J. He, Z. Ni, and W. Chen, Chem. Soc. Rev. 47, 3100 (2018).

    CAS  Google Scholar 

  11. H. Wang, S.M. Ng, H.F. Wong, W.C. Wong, K.K. Lam, Y.K. Liu, L.F. Fei, Y.B. Zhou, C.L. Mak, Y. Wang, and C.W. Leung, Vacuum 152, 239 (2018).

    CAS  Google Scholar 

  12. X. Gao, M. Hu, J. Sun, Y. Fu, J. Yang, W. Liu, and L. Weng, Vacuum 144, 72 (2017).

    CAS  Google Scholar 

  13. K. Ojha, S. Saha, S. Banerjee, and A.K. Ganguli, Appl. Mater. Interfaces 9, 19455 (2017).

    CAS  Google Scholar 

  14. S.Y. Kim, S. Park, and W. Choi, Appl. Phys. A 117, 761 (2014).

    CAS  Google Scholar 

  15. J.H. An and J. Jang, Nanoscale 9, 7483 (2017).

    CAS  Google Scholar 

  16. B.K. Miremadi, R.C. Singh, S.R. Morrison, and K. Colbow, Appl. Phys. A 63, 271 (1996).

    Google Scholar 

  17. S.S. Karade, D.P. Dubal, and B.R. Sankapal, RSC Adv. 6, 39159 (2016).

    CAS  Google Scholar 

  18. Z. Li, X. Meng, and Z. Zhang, J. Photochem. Photobiol. C Photochem. Rev. 35, 39 (2018).

    CAS  Google Scholar 

  19. G. Tang, J. Zhang, C. Liu, D. Zhang, Y. Wang, H. Tang, and C. Li, Ceram. Int. 40, 11575 (2014).

    CAS  Google Scholar 

  20. Y. Chen, X. Wang, P. Wang, H. Huang, G. Wu, B. Tian, Z. Hong, Y. Wang, S. Sun, H. Shen, J. Wang, W. Hu, J. Sun, X. Meng, and J. Chu, ACS Appl. Mater. Interfaces 8, 32083 (2016).

    CAS  Google Scholar 

  21. U. Dasgupta, S. Chatterjee, and A.J. Pal, Sol. Energy Mater. Sol. Cells 172, 353 (2017).

    CAS  Google Scholar 

  22. X. Xiong, W. Luo, X. Hu, C. Chen, L. Qie, D. Hou, and Y. Huang, Sci. Rep. 5, 9254 (2015).

    CAS  Google Scholar 

  23. L. Hao, Y. Liu, W. Gao, Z. Han, Q. Xue, H. Zeng, Z. Wu, J. Zhu, and W. Zhang, J. Appl. Phys. 117, 114502 (2015).

    Google Scholar 

  24. M.A. Albiter, R. Huirache-Acuña, F. Paraguay-Delgado, J.L. Rico, and G. Alonso-Nuñez, Nanotechnology. 17, 3473 (2006).

    CAS  Google Scholar 

  25. P. Joensen, R.F. Frindt, and S.R. Morrison, Mater. Res. Bull. 21, 457 (1986).

    CAS  Google Scholar 

  26. Y. Li, Y. Li, C.M. Araujo, W. Luo, and R. Ahuja, Catal. Sci. Technol. 3, 2214 (2013).

    CAS  Google Scholar 

  27. T. Chu, H. Ilatikhameneh, G. Klimeck, R. Rahman, and Z. Chen, Nano Lett. 15, 8000 (2015).

    CAS  Google Scholar 

  28. D. Lembke, S. Bertolazzi, and A. Kis, Acc. Chem. Res. 48, 100 (2015).

    CAS  Google Scholar 

  29. H. Yu, X. Yu, Y. Chen, S. Zhang, P. Gao, and C. Li, Nanoscale 7, 8731 (2015).

    CAS  Google Scholar 

  30. X. Kong, X. Shen, C. Zhang, S.N. Oliaee, and Z. Peng, Inorg. Chem. Front. 3, 1376 (2016).

    CAS  Google Scholar 

  31. Y. Jiang, D. Wang, J. Li, M. Li, Z. Pan, H. Ma, G. Lv, W. Qu, L. Wang, and Z. Tian, Catal. Sci. Technol. 7, 2998 (2017).

    CAS  Google Scholar 

  32. T.-H. Su, C.-L. Wu, H.-C. Chang, and Y.-J. Lin, J. Mater. Sci. Mater. Electron. 29, 351 (2018).

    CAS  Google Scholar 

  33. V. Mlinar, Phys. Chem. Chem. Phys. 19, 15891 (2017).

    CAS  Google Scholar 

  34. S. Han, C. Yuan, X. Luo, Y. Cao, T. Yu, Y. Yang, Q. Li, and S. Ye, RSC Adv. 5, 68283 (2015).

    CAS  Google Scholar 

  35. Y. Tian, Y. He, and Y. Zhu, Mater. Chem. Phys. 87, 87–90 (2004).

    CAS  Google Scholar 

  36. N. Li, G. Lee, Y.H. Jeong, and K.S. Kim, J. Phys. Chem. C 119, 6405 (2015).

    CAS  Google Scholar 

  37. P. Thangasamy and M. Sathish, Rapid. J. Mater. Chem. C. 4, 1165 (2016).

    CAS  Google Scholar 

  38. S. Liu, X. Zhang, H. Shao, J. Xu, F. Chen, and Y. Feng, Mater. Lett. 73, 223 (2012).

    CAS  Google Scholar 

  39. F.L. Deepak, A. Mayoral, A.J. Steveson, S. Mejía-Rosales, D.A. Blom, and M. José-Yacamán, Nanoscale 2, 2286 (2010).

    CAS  Google Scholar 

  40. M. Remskar, A. Mrzel, M. Virsek, M. Godec, M. Krause, A. Kolitsch, A. Singh, and A. Seabaugh, Nanoscale Res. Lett. 6, 1 (2011).

    Google Scholar 

  41. C.M. Zelenski and P.K. Dorhout, J. Am. Chem. Soc. 120, 734 (1998).

    CAS  Google Scholar 

  42. E.M. Rivera-Mũoz, J. Appl. Phys. 102, 1 (2007).

    Google Scholar 

  43. M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J. Demšar, P. Stadelmann, F. Lévy, and D. Mihailovic, Science 292, 479 (2001).

    CAS  Google Scholar 

  44. H.A. Therese, N. Zink, U. Kolb, and W. Tremel, Solid State Sci. 8, 1133 (2006).

    CAS  Google Scholar 

  45. V. Lavayen, N. Mirabal, C. O’Dwyer, M.A. Santa Ana, E. Benavente, C.M. Sotomayor Torres, and G. González, Appl. Surf. Sci. 253, 5185 (2007).

    CAS  Google Scholar 

  46. S.J. Sandoval, D. Yang, R.F. Frindt, and J.C. Irwin, Phys. Rev. B. 44, 3955 (1991).

    Google Scholar 

  47. S.V.P. Vattikuti and C. Byon, J. Nanomater. 2015, 1 (2015).

    Google Scholar 

  48. S. Mukherjee, R. Maiti, A. Midya, S. Das, and S. Ray, ACS Photon. 2, 760 (2015).

    CAS  Google Scholar 

  49. R. Kumar, N. Goel, and M. Kumar, Appl. Phys. Lett. 112, 053502 (2018).

    Google Scholar 

  50. C. Zhang, Z. Wang, Z. Guo, X.W. Lou, and A.C.S. Appl, Mater. Interfaces 4, 3765 (2012).

    CAS  Google Scholar 

  51. Y. Tian, J. Zhao, W. Fu, Y. Liu, Y. Zhu, and Z. Wang, Mater. Lett. 59, 3452 (2005).

    CAS  Google Scholar 

  52. H. Lin, X. Chen, H. Li, M. Yang, and Y. Qi, Mater. Lett. 64, 1748 (2010).

    CAS  Google Scholar 

  53. S. Han, X. Luo, Y. Cao, C. Yuan, Y. Yang, Q. Li, T. Yu, and S. Ye, J. Cryst. Growth 430, 1 (2015).

    CAS  Google Scholar 

  54. C. Zhang, H. Bin Wu, Z. Guo, and X.W. Lou, Electrochem. Commun. 20, 7 (2012).

    CAS  Google Scholar 

  55. P. Paiva, F. Madelino, and O. Conde, J. Lumin. 80, 141 (1998).

    CAS  Google Scholar 

  56. C. Zhang, J. Zhang, K. Lin, and Y. Huang, Rev. Sci. Instrum. 88, 053907 (2017).

    Google Scholar 

  57. X. Zheng, L. Zhu, A. Yan, C. Bai, and Y. Xie, Ultrason. Sonochem. 11, 83 (2004).

    CAS  Google Scholar 

  58. S. Reshmi, M.V. Akshaya, B. Satpati, A. Roy, P. Kumar Basu, and K. Bhattacharjee, Mater. Res. Express 4, 115012 (2017).

    Google Scholar 

  59. D. Wei, J.I. Mitchell, C. Tansarawiput, W. Nam, M. Qi, P.D. Ye, and X. Xu, Carbon 53, 374 (2013).

    CAS  Google Scholar 

  60. S.N. Bondi, W.J. Lackey, R.W. Johnson, X. Wang, and Z.L. Wang, Carbon 44, 1393 (2006).

    CAS  Google Scholar 

  61. M.K. Moodley, Thesis, Univ. TheWitwatersrand. (2010).

  62. M.K. Moodley and N.J. Coville, Chem. Phys. Lett. 498, 140 (2010).

    CAS  Google Scholar 

  63. H. Guo, Y. Sun, P. Zhai, H. Yao, J. Zeng, S. Zhang, J. Duan, M. Hou, M. Khan, and J. Liu, Appl. Phys. A 375, 1 (2016).

    Google Scholar 

  64. D.E. Motaung, M.K. Moodley, E. Manikandan, and N.J. Coville, J. Appl. Phys. 107, 044308 (2010).

    Google Scholar 

  65. S.J. Panchu, S. Dhani, A. Chuturgoon, and M.K. Moodley, J. Photochem. Photobiol. B Biol. 187, 10 (2018).

    CAS  Google Scholar 

  66. K. Gołasa, M. Grzeszczyk, K.P. Korona, R. Bożek, J. Binder, J. Szczytko, A. Wysmołek, and A. Babiński, Acta Phys. Pol. A 124, 849 (2013).

    Google Scholar 

  67. M. Ye, D. Winslow, D. Zhang, R. Pandey, and Y. Yap, Photonics 2, 288 (2015).

    CAS  Google Scholar 

  68. M. Mohan, K.N.N. Unni, and R.B. Rakhi, Vacuum 166, 335 (2019).

    CAS  Google Scholar 

  69. H. Wu, R. Yang, B. Song, Q. Han, J. Li, Y. Zhang, Y. Fang, R. Tenne, and C. Wang, ACS Nano 5, 1276 (2011).

    CAS  Google Scholar 

  70. H. Dong, D. Chen, K. Wang, and R. Zhang, Nanoscale Res. Lett. 11, 1 (2016).

    Google Scholar 

  71. B. Gao and X. Zhang, S. Afr. J. Chem. 67, 6 (2014).

    Google Scholar 

  72. C.K. Tan, W.C. Wong, S.M. Ng, H.F. Wong, C.W. Leung, and C.L. Mak, Vacuum 153, 274 (2018).

    CAS  Google Scholar 

  73. M.R. Gao, M.K.Y. Chan, and Y. Sun, Nat. Commun. 6, 7493 (2015).

    Google Scholar 

  74. H. Lu, A. Kummel, and J. Robertson, APL Mater. 6, 066104 (2018).

    Google Scholar 

  75. J. Bruncko, M. Netrvalova, A. Vincze, P. Šutta, M. Michalka, and F. Uherek, Vacuum 98, 56 (2013).

    CAS  Google Scholar 

  76. S.V.P. Vattikuti, C. Byon, C.V. Reddy, J. Shim, and B. Venkatesh, Appl. Phys. A Mater. Sci. Process. 119, 813 (2015).

    CAS  Google Scholar 

  77. P. Liu, Y. Liu, W. Ye, J. Ma, and D. Gao, Nanotechnology. 27, 225403 (2016).

    Google Scholar 

  78. J.P. Wilcoxon, P.P. Newcomer, and G.A. Samara, J. Appl. Phys. 81, 7934 (1997).

    CAS  Google Scholar 

  79. R. Coehoorn, C. Haas, J. Dijkstra, C.J.F. Flipse, R.A. de Groot, and A. Wold, Phys. Rev. B 35, 6195 (1987).

    CAS  Google Scholar 

  80. A.M. Panich, A.I. Shames, R. Rosentsveig, and R. Tenne, J. Phys. Condens. Matter 21, 395301 (2009).

    CAS  Google Scholar 

  81. X. Ren, L. Pang, Y. Zhang, X. Ren, H. Fan, and S. Liu, J. Mater. Chem. A 3, 10693 (2015).

    CAS  Google Scholar 

  82. F. Zahid, L. Liu, Y. Zhu, J. Wang, and H. Guo, AIP Adv. 3, 052111 (2013).

    Google Scholar 

  83. M.D. Siao, W.C. Shen, R.S. Chen, Z.W. Chang, M.C. Shih, Y.P. Chiu, and C.M. Cheng, Nat. Commun. 9, 1 (2018).

    CAS  Google Scholar 

Download references

Acknowledgments

Miss Sarojini Jeeva Panchu is grateful to the University of KwaZulu-Natal, the National Research Foundation (NRF) South Africa for the Free-Standing Doctoral Grant (Grant UID: 112896). The Microscopy and Microanalysis Unit (MMU) is a service facility at the University of KwaZulu-Natal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathew K. Moodley.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panchu, S.J., Adebisi, M.A., Manikandan, E. et al. Catalyst-Free Growth of MoS2 Nanorods Synthesized by Dual Pulsed Laser-Assisted Chemical Vapor Deposition and Their Structural, Optical and Electrical Properties. J. Electron. Mater. 49, 1957–1968 (2020). https://doi.org/10.1007/s11664-019-07817-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07817-z

Keywords

Navigation