Skip to main content
Log in

Synthesis of Tetragonal Cu2NiSnS4 Thin Film via Low-Cost Electrodeposition Method: Effect of Ni2+ Molarity

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Quaternary semiconductor Cu2NiSnS4 (CNTS) has emerged as an ideal material for solar cells and has attracted the attention of researchers. Tetragonal-structured CNTS thin films have been successfully synthesized via sulfurization (500°C, argon + sulfur) of co-electrodeposited Cu-Sn-Ni-S precursors on molybdenum (Mo) substrate. The effects of the Ni2+ molarity on the deposition potential, structure, composition, morphology, and optical bandgap of the CNTS thin film were examined by using cyclic voltammetry, Raman spectroscopy, x-ray diffraction analysis, scanning electron microscopy (SEM), energy-dispersive x-ray (EDX) spectrometry, and ultraviolet–visible (UV–Vis) spectrophotometer. X-ray diffraction and Raman analyses confirmed formation of CNTS with tetragonal structure and average crystallite size of 17 nm to 20 nm. SEM revealed that the films were homogeneous, while EDX confirmed the presence of Cu-Ni-Sn-S, and the bandgap of the CNTS thin films was evaluated to lie in the range of 1.6 eV to 1.8 eV, making CNTS a strong candidate material for use in photovoltaic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Chandel, V. Thakur, S. Halaszova, M. Prochazka, D. Haško, D. Velic, and R. Poolla, J. Electron. Mater. 47, 5477 (2018).

    CAS  Google Scholar 

  2. R. Hosseinpour, M. Izadifard, M.E. Ghazi, and B. Bahramian, J. Electron. Mater. 47, 1080 (2018).

    CAS  Google Scholar 

  3. S.S. Fouad, I.M. El Radaf, P. Sharma, and M.S. El Bana, J. Alloys Compd. 757, 124 (2018).

    CAS  Google Scholar 

  4. K.V. Gurav, Y.K. Kim, S.W. Shin, M.P. Suryawanshi, N.L. Tarwal, U.V. Ghorpade, S.M. Pawar, S.A. Vanalakar, I.Y. Kim, J.H. Yun, P.S. Patil, and J.H. Kim, Appl. Surf. Sci. 334, 192 (2014).

    Google Scholar 

  5. S. Shin, C. Park, C. Kim, Y. Kim, S. Park, and J.H. Lee, Curr. Appl. Phys. 16, 207 (2016).

    Google Scholar 

  6. A. Agasti, S. Mallick, and P. Bhargava, J. Mater. Sci. Mater. Electron. 29, 4065 (2017).

    Google Scholar 

  7. M. Marzougi, M. Ben Rabeh, and M. Kanzari, Thin Solid Films 672, 41 (2019).

    CAS  Google Scholar 

  8. C.L. Yang, Y.H. Chen, M. Lin, S.L. Wu, L. Li, W.C. Liu, X.S. Wu, and F.M. Zhang, Mater. Lett. 166, 101 (2016).

    CAS  Google Scholar 

  9. M. Rouchdi, E. Salmani, N. Hassanain, and A. Mzerd, Opt. Quantum Electron. 49, 1 (2017).

    Google Scholar 

  10. J. Yu, H. Deng, J. Tao, L. Chen, H. Cao, L. Sun, P. Yang, and J. Chu, Mater. Lett. 191, 186 (2017).

    CAS  Google Scholar 

  11. M. Beraich, M. Taibi, A. Guenbour, A. Zarrouk, M. Boudalia, A. Bellaouchou, M. Tabyaoui, Z. Sekkat, and M. Fahoume, J. Mater. Sci. Mater. Electron. 30, 12487 (2019).

    CAS  Google Scholar 

  12. Z. Tong, J. Yuan, J. Chen, A. Wu, W. Huang, C. Han, Q. Cai, C. Ma, Y. Liu, L. Fang, and Z. Liu, Mater. Lett. 237, 130 (2019).

    CAS  Google Scholar 

  13. Y. Guo, W. Cheng, J. Jiang, S. Zuo, F. Shi, and J. Chu, Mater. Lett. 172, 68 (2016).

    CAS  Google Scholar 

  14. J. Zhou, S. Yu, X. Guo, L. Wu, and H. Li, Curr. Appl. Phys. 19, 67 (2019).

    Google Scholar 

  15. P.S. Maldar, A.A. Mane, S.S. Nikam, S.D. Giri, A. Sarkar, and A.V. Moholkar, J. Mater. Sci. Mater. Electron. 28, 18891 (2017).

    CAS  Google Scholar 

  16. Z. Chen, K. Sun, Z. Su, F. Liu, D. Tang, H. Xiao, L. Shi, L. Jiang, X. Hao, and Y. Lai, ACS Appl. Energy Mater. 1, 3420 (2018).

    CAS  Google Scholar 

  17. H. Oueslati, M. Ben Rabeh, and M. Kanzari, J. Electron. Mater. 47, 3577 (2018).

    CAS  Google Scholar 

  18. G. Sahaya Dennish Babu, X.S. Shajan, S. Alwin, V. Ramasubbu, and G.M. Balerao, J. Electron. Mater. 47, 312 (2018).

    CAS  Google Scholar 

  19. M.S. Kumar, S.P. Madhusudanan, and S.K. Batabyal, Sol. Energy Mater. Sol. Cells 185, 287 (2018).

    CAS  Google Scholar 

  20. M. Beraich, M. Taibi, A. Guenbour, A. Zarrouk, M. Boudalia, A. Bellaouchou, M. Tabyaoui, S. Mansouri, Z. Sekkat, and M. Fahoume, Optik 193, 162996 (2019).

    CAS  Google Scholar 

  21. T.X. Wang, Y.G. Li, H.R. Liu, H. Li, and S.X. Chen, Mater. Lett. 124, 148 (2014).

    Google Scholar 

  22. A. Sarilmaz and F. Ozel, J. Alloys Compd. 780, 518 (2019).

    CAS  Google Scholar 

  23. A. Kamble, K. Mokurala, A. Gupta, S. Mallick, and P. Bhargava, Mater. Lett. 137, 440 (2014).

    CAS  Google Scholar 

  24. F. Ozel, J. Alloys Compd. 657, 157 (2016).

    CAS  Google Scholar 

  25. S. Sarkar, B. Das, P.R. Midya, G.C. Das, and K.K. Chattopadhyay, Mater. Lett. 152, 155 (2015).

    CAS  Google Scholar 

  26. A. Ghosh, A. Biswas, R. Thangavel, and G. Udayabhanu, RSC Adv. 6, 96025 (2016).

    CAS  Google Scholar 

  27. S. Dridi, N. Bitri, and M. Abaab, Mater. Lett. 204, 61 (2017).

    CAS  Google Scholar 

  28. A. Jariwala, T.K. Chaudhuri, S. Patel, A. Toshniwal, V. Kheraj, and A. Ray, Mater. Lett. 215, 118 (2017).

    Google Scholar 

  29. H.J. Chen, S.W. Fu, T.C. Tsai, and C.F. Shih, Mater. Lett. 166, 215 (2016).

    CAS  Google Scholar 

  30. A. Chihi, M. Fethi, and B. Brahim, J. Mater. Sci.: Mater. Electron. 30, 3338 (2019).

    CAS  Google Scholar 

  31. M. Rouchdi, E. Salmani, N. Hassanain, and A. Mzerd, Opt. Quantum Electron. 49, 1 (2017).

    Google Scholar 

  32. T.K. Ghediya and P.R. Chaudhuri, Mater. Res. Express. 5, 085509 (2018).

    Google Scholar 

  33. P.S. Maldar, M.A. Gaikwad, A.A. Mane, S.S. Nikam, S.P. Desai, S.D. Giri, A. Sarkar, and A.V. Moholkar, Sol. Energy 158, 89 (2017).

    CAS  Google Scholar 

  34. R. Boughalmi, R. Rahmani, A. Boukhachem, B. Amrani, K. Driss-Khodja, and M. Amlouk, Mater. Chem. Phys. 163, 99 (2015).

    CAS  Google Scholar 

  35. J. Yu, H. Deng, Q. Zhang, J. Tao, L. Sun, P. Yang, and J. Chu, Mater. Lett. 233, 111 (2018).

    CAS  Google Scholar 

  36. W. Wang, B. Chen, G. Chen, H. Cai, J. Dong, Y. Liao, S. Chen, and Z. Huang, Mater. Lett. 214, 170 (2018).

    CAS  Google Scholar 

  37. F. López-Vergara, A. Galdámez, V. Manríquez, and G. González, Solid State Sci. 49, 54 (2015).

    Google Scholar 

  38. M. Krishnaiah, P. Bhargava, and S. Mallick, RSC Adv. 5, 96928 (2015).

    CAS  Google Scholar 

  39. P.A. Fernandes, P.M.P. Salomé, and A.F. Cunha, J. Alloys Compd. 509, 7600 (2011).

    CAS  Google Scholar 

  40. H. Emadi, M. Salavati-Niasari, and F. Davar, Chalcogenide Lett. 7, 647 (2010).

    Google Scholar 

  41. L. Fang, B. Davis, H. Lu, X. Chen, X. Shen, and J.R. Lombardi, Chem. Phys. Lett. 352, 70 (2002).

    CAS  Google Scholar 

  42. K.V. Khot, N.B. Pawar, and R.R. Kharade, RSC Adv. 5, 40283 (2015).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Beraich.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beraich, M., Taibi, M., Guenbour, A. et al. Synthesis of Tetragonal Cu2NiSnS4 Thin Film via Low-Cost Electrodeposition Method: Effect of Ni2+ Molarity. J. Electron. Mater. 49, 728–735 (2020). https://doi.org/10.1007/s11664-019-07707-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07707-4

Keywords

Navigation