Skip to main content
Log in

Effect of Reaction Period on Stoichiometry, Phase Purity, and Morphology of Hydrothermally Synthesized Cu2NiSnS4 Nanopowder

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effect of reaction period on the phase purity, morphology, and stoichiometry of Cu2NiSnS4 (CNTS) nanopowder prepared by hydrothermal method has been investigated. Polyvinylpyrrolidone (PVP) and thioglycolic acid were used as capping agent and sulfur source, respectively. The presence of cubic stannite crystal structure and its phase purity were confirmed by powder x-ray diffraction analysis and Raman spectroscopy. Furthermore, the morphological, crystallographic, and optical features of the prepared CNTS nanopowder were characterized by field-emission scanning electron microscopy, transmission electron microscopy, and ultraviolet–visible (UV–Vis) spectrophotometry. The elemental ratios of Cu/(Ni + Sn) and Ni/Sn showed that the stoichiometry of CNTS was maintained for the compounds synthesized at 230°C with reaction period of 24 h. The occurrence of Cu+, Ni2+, Sn4+, and S2− was evaluated by x-ray photoelectron spectroscopy. The prepared material was used as counter electrode in a dye-sensitized solar cell (DSSC) as an alternative to platinum (Pt), resulting in conversion efficiency of 0.92%. These results indicate that CNTS is a prospective material to replace conventional Pt-based counter electrodes in DSSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Ramasamy, M.A. Malik, and P. O’Brien, Chem. Commun. 48, 5703 (2012).

    Article  Google Scholar 

  2. G.M. Ford, Q. Guo, R. Agrawal, and H.W. Hillhouse, Chem. Mater. 23, 2626 (2011).

    Article  Google Scholar 

  3. D.B. Mitzi, O. Gunawan, T.K. Todorov, K. Wang, and S. Guha, Sol. Energy Mater. Sol. Cells 95, 1421 (2011).

    Article  Google Scholar 

  4. S.Y. Kuo and M.Y. Hsieh, Nanoscale 6, 7553 (2014).

    Article  Google Scholar 

  5. K. Mokurala, S. Mallick, and P. Bhargava, J. Power Sources 305, 134 (2016).

    Article  Google Scholar 

  6. W. Liu, B. Guo, C. Mak, A. Li, X. Wu, and W. Zhang, Thin Solid Films 535, 39 (2013).

    Article  Google Scholar 

  7. S.A. Vanalakar, G.L. Agawane, S.W. Shin, M.P. Suryawanshi, K.V. Gurav, K.S. Jeon, P.S. Patil, C.W. Jeong, J.Y. Kim, and J.H. Kim, J. Alloys Compd. 619, 109 (2015).

    Article  Google Scholar 

  8. P. Dai, G. Zhang, F. Liu, L. Jiang, Y. Lai, J. Li, and Y. Liu, Chem. Commun. 48, 3006 (2012).

    Article  Google Scholar 

  9. T.-X. Wang, Y.G. Li, H.R. Liu, H. Li, and S.X. Chen, Mater. Lett. 124, 148 (2014).

    Article  Google Scholar 

  10. A. Kamble, K. Mokurala, A. Gupta, S. Mallick, and P. Bhargava, Mater. Lett. 137, 440 (2014).

    Article  Google Scholar 

  11. A.B. Djurisic, Y. Xi, Y. Hsu, and W.K. Chan, Recent Pat. Nanotechnol. 1, 121 (2007).

    Article  Google Scholar 

  12. S.K. Saha, A. Guchhait, and A.J. Pal, Phys. Chem. Chem. Phys. 14, 8090 (2012).

    Article  Google Scholar 

  13. C. Xiao, K. Li, J. Zhang, W. Tong, Y. Liu, Z. Li, P. Huang, B. Pan, H. Su, and Y. Xie, Mater. Horiz. 1, 81 (2014).

    Article  Google Scholar 

  14. Y. Xia, Z. Chen, Z. Zhang, X. Fang, and G. Liang, Nanoscale Res. Lett. 9, 208 (2014).

    Article  Google Scholar 

  15. X. Gu, S. Zhang, Y. Qiang, Y. Zhao, and L. Zhu, J. Electron. Mater. 43, 2709 (2014).

    Article  Google Scholar 

  16. E.A. Gibson, L.L. Pleux, J. Fortage, Y. Pellegrin, E. Blart, F. Odobel, A. Hagfeldt, and G. Boschloo, Langmuir 28, 6485 (2012).

    Article  Google Scholar 

  17. S. Chen, A. Xu, J. Tao, H. Tao, Y. Shen, L. Zhu, J. Jiang, T. Wang, L. Pan, and A.C.S. Sustain, Chem. Eng. 3, 2652 (2015).

    Google Scholar 

  18. S. Alwin, X.S. Shajan, R. Menon, P.Y. Nabhiraj, K.G.K. Warrier, and M. Rao, Thin Solid Films 595, 164 (2015).

    Article  Google Scholar 

  19. S. Alwin, X.S. Shajan, K. Karuppasamy, and K.G.K. Warrier, Mater. Chem. Phys. 196, 37 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Sahaya Shajan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, G.S.D., Shajan, X.S., Alwin, S. et al. Effect of Reaction Period on Stoichiometry, Phase Purity, and Morphology of Hydrothermally Synthesized Cu2NiSnS4 Nanopowder. J. Electron. Mater. 47, 312–322 (2018). https://doi.org/10.1007/s11664-017-5765-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5765-5

Keywords

Navigation