Skip to main content
Log in

Flexible electromagnetic absorber in X-band using a polymer electrolyte having mixed conduction

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Present work is on the synthesis and characterization of polymer nanocomposite (PNC) films consisting of polyethylene oxide (PEO), inorganic salt lithium bis(trifluoromethane)sulfonimidate ([Li][TFSI]), ionic liquid 1-Hexyl-3-methylimidazolium bis(trifluormethyl sulfonyl)imide ([HMIM][TFSI]), MWCNTs, and CoFe2O4 nanoparticles prepared by solution cast method. Inclusion of [Li][TFSI], [HMIM][TFSI], and MWCNTs in the polymer matrix has resulted in an enhancement of the conductivity (which is due to both ions and electrons, i.e., mixed conduction) and dielectric properties of the composite films as evidenced by complex impedance spectroscopy. Synergistic influence of both fillers (MWCNTs, and CoFe2O4) on the shielding effectiveness (SE) has been observed which is attributed to (i) connecting network provided by the CNTs and (ii) magnetic losses provided by the CoFe2O4. Moreover, attenuation of incident electromagnetic waves (frequency range 8.2–12.4 GHz) by absorption has been tuned for an optimum combination of CoFe2O4 and polymer electrolyte with 6 wt% MWCNTs (PECN0). The PNC is found to exhibit the commercially desired SE of ~ 47 dB in X-band.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Fig. 8

Similar content being viewed by others

References

  1. L.B. Kong, Z.W. Li, L. Liu, R. Huang, M. Abshinova, Z.H. Yang, C.B. Tang, P.K. Tan, C.R. Deng, S. Matitsine, Recent progress in some composite materials and structures for specific electromagnetic applications: EMI shielding methods and materials—a review. Int. Mater. Rev. 58, 203–259 (2013)

    CAS  Google Scholar 

  2. S. Geetha, S. Kumar, K.K., C.R.K. Rao, M. Vijayan, D.C. Trivedi, EMI Shielding: Methods and Materials- A Review. J. Appl. Polym. Sci. 112, 2073–2086 (2009).

  3. L. Kheifets, A.A. Afifi, R. Shimkhada, Public health impact of extremely low frequency electromagnetic fields. Environ. Health Persp. 114, 1532–1607 (2006)

    Google Scholar 

  4. X.C. Tong, Advanced Materials and Design for Electromagnetic Interference Shielding. CRC Press (2008).

  5. S. Yasufuku, Technical progress of EMI shielding materials. IEEE Electr. Insul. Mag. 6, 21–30 (1990)

    Google Scholar 

  6. J. Kruželák, A. Kvasničáková, K. Hložeková, I. Hudec, Progress in polymers and polymer composites used as efficient materials for EMI shielding. Nanoscale Adv. 3, 123–172 (2021)

    Google Scholar 

  7. J. Ling, W. Zhai, W. Feng, B. Shen, J. Zhang, W. Zheng, Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 5, 2677–2684 (2013)

    CAS  Google Scholar 

  8. T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose, J.H. Lee, Recent advances in fabrication and characterization of graphene-polymer nanocomposites. Prog. Polym. Sci. 35, 1350–1375 (2010)

    CAS  Google Scholar 

  9. M. Thomassin, C. Pagnoulle, L. Bednarz, I. Huynen, R. Jerome, C. Detrembleur, Foams of polycaprolactone/MWNT nanocomposites for efficient EMI reduction. J. Mater. Chem. 18, 792–796 (2008)

    CAS  Google Scholar 

  10. J. Xu, R. Shu, Z. Wan, J. Shi, Construction of three-dimensional hierarchical porous nitrogen-doped reduced graphene oxide/hollow cobalt ferrite composite aerogels toward highly efficient electromagnetic wave absorption. J. Mater. Sci. Technol. 132, 193–200 (2023)

    Google Scholar 

  11. R. Shu, J. Xu, Z. Wan, X. Cao, Synthesis of hierarchical porous nitrogen-doped reduced graphene oxide/zinc ferrite composite foams as ultrathin and broadband microwave absorbers. J. Colloid Interface Sci. 608, 2994–3003 (2022)

    CAS  Google Scholar 

  12. R. Andrews, D. Jacques, M. Minot, T. Rantell, Fabrication of carbon multiwall nanotube/polymer composites by shear mixin. Macromol. Mater. Eng. 287, 395–403 (2002)

    CAS  Google Scholar 

  13. A.P. Singh, B.K. Gupta, M. Mishra, A. Chandra, R.B. Mathur, S.K. Dhawan, Multiwalled carbon nanotube/cement composites with exceptional electromagnetic interference shielding properties. Carbon 56, 86–96 (2013)

    CAS  Google Scholar 

  14. M.H. Al-Saleh, U. Sundararaj, Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47, 1738–1746 (2009)

    CAS  Google Scholar 

  15. B. Shen, W. Zhai, M. Tao, J. Ling, W. Zheng, Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl. Mater. Interfaces 5, 11383–11391 (2013)

    CAS  Google Scholar 

  16. R. Shu, G. Zhang, X. Wang, X. Gao, M. Wang, Y. Gan, J. He, Fabrication of 3D net-like MWCNTs/ZnFe2O4 hybrid composites as high-performance electromagnetic wave absorbers. Chem. Eng. J. 337, 242–255 (2018)

    CAS  Google Scholar 

  17. N. Gandhi, S.K. Dhawan, Thermal, dielectric and microwave absorption properties of polyaniline-CoFe2O4 nanocomposites. Compos. Sci. Technol. 71, 1754–1760 (2011)

    CAS  Google Scholar 

  18. C.H. Phan, M. Mariatti, Y.H. Koh, Electromagnetic interference shielding performance of epoxy composites filled with multiwalled carbon nanotubes/manganese zinc ferrite hybrid fillers. J. Magn. Magn. Mater. 401, 472–478 (2016)

    CAS  Google Scholar 

  19. S.P. Pawar, D.A. Marathe, K. Pattabhi, S. Bose, Electromagnetic interference shielding through MWNT grafted Fe3O4 nanoparticles in PC/SAN blends. J. Mater. Chem. A 3, 656–669 (2015)

    CAS  Google Scholar 

  20. G.P. Kar, S. Biswas, R. Rohini, S. Bose, Tailoring the dispersion of multiwall carbon nanotubes in continuous PVDF/ABS blends to design materials with enhanced electromagnetic interference shielding. J. Mater. Chem. A 3, 7974–7985 (2015)

    CAS  Google Scholar 

  21. R. Shu, Y. Wu, Z. Li, J. Zhang, Z. Wan, Y. Liu, M. Zheng, Facile synthesis of cobalt-zinc ferrite microspheres decorated nitrogen-doped multi-walled carbon nanotubes hybrid composites with excellent microwave absorption in the X-band. Compos. Sci. Technol. 184, 107839 (2019)

    CAS  Google Scholar 

  22. T.K. Zhao, W.B. Jin, X. Ji, Y. Jiang, Y. Dong, Y. Yang, A. Dang, H. Li, T. Li, S. Sang, Z. Zhou, Synthesis of sandwich microstructured expanded graphite/barium ferrite connected with carbon nanotube composite and its electromagnetic wave absorbing properties. J. Alloys Compd. 712, 59–68 (2017)

    CAS  Google Scholar 

  23. M. Lu, X. Wang, W. Cao, J. Yuan, M. Cao, Carbon nanotube-CdS core–shell nanowires with tunable and high-efficiency microwave absorption at elevated temperature. Nanotechnology 27, 065702 (2015)

    Google Scholar 

  24. M. Wang, Y. Zhang, C. Dong, G. Chen, H. Guan, Preparation and electromagnetic shielding effectiveness of cobalt ferrite nanoparticles/carbon nanotubes composites. Nanomater. Nanotechnol. 9, 1–7 (2019)

    Google Scholar 

  25. R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16, 401–405 (2004)

    CAS  Google Scholar 

  26. X. Qi, Q. Hu, J. Xu, R. Xie, Z. Bai, Y. Jiang, S. Qin, W. Zhong, Y. Du, Enhanced microwave absorption properties and mechanism of core/shell structured magnetic nanoparticles/carbon-based nanohybrids. Mater. Sci. Eng. B 198, 108–112 (2015)

    CAS  Google Scholar 

  27. X. Jin, Q.Q. Ni, Y. Fu, L. Zhang, T. Natsuki, Electrospun nanocomposite polyacrylonitrile fibers containing carbon nanotubes and cobalt ferrite. Polym. Compos. 33, 317–323 (2012)

    CAS  Google Scholar 

  28. G.H. Lim, S. Woo, H. Lee, K.S. Moon, H. Sohn, S.E. Lee, B. Lim, Mechanically robust magnetic carbon nanotube papers prepared with CoFe2O4 nanoparticles for electromagnetic interference shielding and magnetomechanical actuation. ACS Appl. Mater. Interfaces 9, 40628–40637 (2017)

    CAS  Google Scholar 

  29. Y.S. Vygodskii, E.I. Lozinskaya, A.S. Shaplov, Ionic Liquids as novel promising reaction media for organic and polymer synthesis. Polym. Sci. Ser. C 43, 236–251 (2001)

    Google Scholar 

  30. P. Wasserscheid, T. Welton, eds. Ionic liquids in synthesis. Weinheim:Wiley-VCH 1, 367 (2008).

  31. Lewandowski, A. Swiderska, New composite solid electrolytes based on a polymer and ionic liquids. Solid State Ionics 169, 21–24 (2004)

  32. S.S. Balducci, G.T. Jeong, S. Kim, M. Passerini, M. Winter, G.B. Schmuck, R. Appetecchi, D. Marcilla, V. Mecerreyes, V. Barsukov, Khomenko, Development of safe, green and high performance ionic liquids-based batteries (ILLIBATT project). J. Power Sources 196, 9719–9730 (2011)

    CAS  Google Scholar 

  33. M.K. Vyas, A. Chandra, Ion-electron-conducting polymer composites: promising electromagnetic interference shielding material. ACS Appl. Mater. Interfaces 8, 18450–18461 (2016)

    CAS  Google Scholar 

  34. M. Sharma, K. Sharma, J. Abraham, S. Thomas, G. Madras, S. Bose, Flexible EMI shielding materials derived by melt blending PVDF and ionic liquid modified MWCNTs. Mater. Res. Exp. 1, 035003–035020 (2014)

    CAS  Google Scholar 

  35. G. Sang, J. Dong, X. He, J. Jiang, J. Li, P. Xu, Y. Ding, Electromagnetic interference shielding performance of polyurethane composites: a comparative study of GNs-IL/Fe3O4 and MWCNTs-IL/Fe3O4 hybrid fillers. Composite B 164, 467–475 (2019)

    CAS  Google Scholar 

  36. N. Gill, A.L. Sharma, V. Gupta, M. Tomar, O.P. Pandey, D.P. Singh, Enhanced microwave absorption and suppressed reflection of polypyrrole-cobalt ferrite-graphene nanocomposite in X-band. J. Alloys Compd. 797, 1190–1197 (2019)

    CAS  Google Scholar 

  37. G. Allaedini, S.M. Tasirin, P. Aminayi, Magnetic properties of cobalt ferrite synthesized by hydrothermal method. Int. Nano Lett. 5, 183–186 (2015)

    CAS  Google Scholar 

  38. G.P. Pandey, S.A. Hashmi, Ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate-based gel polymer electrolyte for electrochemical capacitors. J. Mater. Chem. A 1, 3372–3378 (2013)

    CAS  Google Scholar 

  39. S. Khurana, A. Chandra, Ionic liquid-based organic-inorganic hybrid electrolytes: Impact of in situ obtained and dispersed silica. J. Polym. Sci. Part B 56, 207–218 (2017)

    Google Scholar 

  40. S.A.M. Noor, A. Ahmad, I.A. Talib, M.Y.A. Rahman, Morphology, chemical interaction, and conductivity of a PEO-ENR50 based on solid polymer electrolyte. Ionics (Kiel) 16, 161–170 (2010)

    CAS  Google Scholar 

  41. L.T. Khoon, N.F.M. Zaini, N.N. Mobarak, N.H. Hassan, S.A.M. Noor, S. Mamat, K.S. Loh, K.H. KuBulat, M.S. Su’ait, A. Ahmad, PEO based polymer electrolyte comprised of epoxidized natural rubber material (ENR50) for Li-Ion polymer battery application. Electrochim. Acta 316, 283–291 (2019)

    Google Scholar 

  42. N. Zainal, N.S. Mohamed, R. Idris, Properties of ENR-50 based electrolyte system. Sains Malays. 42, 481–485 (2013)

    CAS  Google Scholar 

  43. S.A.M. Noor, A. Ahmad, I.A. Talib, M.Y.A. Rahman, Effects of ENR on morphology, chemical interaction and conductivity of PEO-LiCF3SO3 solid polymer electrolyte. Solid State Sci. Technol. Lett. 18, 115–125 (2010)

    CAS  Google Scholar 

  44. K. Chrissopoulou, K.S. Andrikopoulos, S. Fotiadou, S. Bollas, C. Karageorgaki, D. Christofilos, G.A. Voyiatzis, S.H. Anastasiadis, Crystallinity and chain conformation in PEO/layered silicate nanocomposites. Macromolecules 44, 9710–9722 (2011)

    CAS  Google Scholar 

  45. J. Mosa, J.F. Vélez, M. Aparicio, Blend hybrid solid electrolytes based on LiTFSI doped silica-polyethylene oxide for lithium-ion batteries. Membranes 9, 109 (2019)

    CAS  Google Scholar 

  46. A.M. Moschovi, S. Ntais, V. Dracopoulos, V. Nikolakis, Vibrational spectroscopic study of the protic ionic liquid 1-H-3-methylimidazolium bis(trifluoromethanesulfonyl)imide. Vibra. Spectro. 63, 350–359 (2012)

    CAS  Google Scholar 

  47. S. Schantz, L.M. Torell, J.R. Stevens, Ion pairing effects in poly(propylene glycol)-salt complexes as a function of molecular weight and temperature: a Raman scattering study using NaCF3SO3 and LiClO4. J. Chem. Phys. 94, 6862–6867 (1991)

    CAS  Google Scholar 

  48. R. Frech, W. Huang, Conformational changes in diethylene glycol dimethyl ether and poly(ethylene oxide) induced by lithium ion complexation. Macromolecules 28, 1246–1251 (1995)

    CAS  Google Scholar 

  49. F.E. Bailey, J.V. Koleske, Poly(ethylene oxide) (Academic Press, New York, 1976)

    Google Scholar 

  50. I.S. Elashmawi, L.H. Gaabour, Raman, morphology and electrical behavior of nanocomposites based on PEO/PVDF with multi-walled carbon nanotubes. Results Phys. 5, 105–110 (2015)

    Google Scholar 

  51. Y. Yoshida, Y. Kaburagi, Hishiyama, Full width at half maximum intensity of G band in first order Raman spectrum of carbon material as a parameter for graphitization- a study with pyrolytic carbons. Tanso 221, 2–7 (2006)

    CAS  Google Scholar 

  52. A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013)

    CAS  Google Scholar 

  53. J. Abraham, P. Xavier, S. Bose, S.C. George, N. Kalarikkal, S. Thomas, Investigation into dielectric behaviour and electromagnetic interference shielding effectiveness of conducting styrene butadiene rubber composites containing ionic liquid modified MWCNT. Polymer 112, 102–115 (2017)

    CAS  Google Scholar 

  54. P. Li, R. Ma, Y. Zhou, Y. Chen, Q. Liu, G. Peng, Z. Liang, J. Wang, Spinel nickel ferrite nanoparticles strongly cross-linked with multiwalled carbon nanotubes as a bi-efficient electrocatalyst for oxygen reduction and oxygen evolution. RSC Adv. 5, 73834–73841 (2015)

    CAS  Google Scholar 

  55. M. Farbod, S.K. Tadavani, A. Kiasat, Surface oxidation and effect of electric field on dispersion and colloids stability of multiwalled carbon nanotubes. Colloids Surf. A 384, 685–690 (2011)

    CAS  Google Scholar 

  56. A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107 (2000)

    CAS  Google Scholar 

  57. C.Y. Su, Y. Xu, W. Zhang, J. Zhao, X. Tang, C.H. Tsai, L.J. Li, Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers. Chem. Mater. 21, 5674–5680 (2009)

    CAS  Google Scholar 

  58. X. Chen, H.U. Liu, Y. Zheng, Y. Zhai, X. Liu, C. Liu, L. Mi, Z. Guo, C. Shen, Highly compressible and robust polyimide/carbon nanotube composite aerogel for high- performance wearable pressure sensor. ACS Appl. Mater. Interfaces 11, 42594–42606 (2019)

    CAS  Google Scholar 

  59. T. Zhu, S.C. Chang, Y.F. Song, M. Lahoubi, W. Wang, PVP-encapsulated CoFe2O4/ rGO composites with controllable electromagnetic wave absorption performance. Chem. Eng. J. 373, 755–766 (2019)

    CAS  Google Scholar 

  60. A.E. Vilian, V. Veeramani, S.M. Chen, R. Madhu, C.H. Kwak, Y.S. Huh, Y.K. Han, Immobilization of myoglobin on Au nanoparticle-decorated carbon nanotube/polytyramine composite as a mediator-free H2O2 and nitrite biosensor. Sci. Rep. 5, 18390 (2015)

    CAS  Google Scholar 

  61. V. Sharova, A. Moretti, T. Diemant, A. Varzi, R.J. Behm, S. Passerini, Comparative study of imide-based Li salts as electrolyte additives for Li-ion batteries. J. Power Sources 375, 43–52 (2018)

    CAS  Google Scholar 

  62. Y. Melamed, N. Maity, L. Meshi, N. Eliaz, Electroplating of pure aluminum from [HMIm][TFSI]–AlCl3 room-temperature ionic liquid. Coatings 11, 1414 (2021)

    CAS  Google Scholar 

  63. Z. Shen, J. Zhong, W. Xie, J. Chen, X. Ke, J. Ma, Z. Shi, Effect of LiTFSI and LiFSI on cycling performance of lithium metal batteries using thermoplastic polyurethane/halloysite nanotubes solid electrolyte. Acta Metallurgica Sinica (Eng. Let.) 34, 359–372 (2021).

  64. K. Song, X. Wang, J. Wang, B. Zhang, R. Yang, Hierarchical structure of CoFe2O4 core-shell microsphere coating on carbon fiber cloth for high-performance asymmetric flexible supercapacitor applications. Ionics 25, 4905–4914 (2019)

    CAS  Google Scholar 

  65. E. Iizuka, The effects of magnetic fields on the structure of cholesteric liquid crystals of polypeptides. Polym. J. 4, 401–408 (1973)

    CAS  Google Scholar 

  66. L. Tauxe, H.N. Bertram, C. Seberino, Physical interpretation of hysteresis loops: micromagnetic modeling of fine particle magnetite. Geochem. Geophys. Geosyst. 3, 1–22 (2002)

    Google Scholar 

  67. Y. Ye, J.H. Choi, K.I. Winey, Y.A. Elabd, Polymerized ionic liquid block and random copolymers: effect of weak microphase separation on ion transport. Macromolecules 45, 7027–7035 (2012)

    CAS  Google Scholar 

  68. M.H. Buraidah, L.P. Teo, S.R. Majid, A.K. Arof, Ionic conductivity by correlated barrier hopping in NH4I doped chitosan solid electrolyte. Physica B 404, 1373–1379 (2009)

    CAS  Google Scholar 

  69. P. Pötschke, S.M. Dudkin, I. Alig, Dielectric Spectroscopy on Melt Processed Polycarbonate-Multiwalled Carbon Nanotube Composites. Polymer 44, 5023–5030 (2003).

  70. E.M. Abdelrazek, I.S. Elashmawi, A.M. Hezma, A. Rajeh, M. Kamal, Effect of an encapsulate carbon nanotubes (CNTs) on structural and electrical properties of PU/PVC nanocomposites. Physica B 502, 48–55 (2016)

    CAS  Google Scholar 

  71. H. Guo, Y. Zhan, Z. Chen, F. Meng, J. Wei, X. Liu, Decoration of basalt fibers with hybrid Fe3O4 microspheres and their microwave absorption application in bisphthalonitrile composites. J. Mater. Chem. A 1, 2286–2296 (2013)

    CAS  Google Scholar 

  72. A.T. Pathan, A.M. Shaikh, Dielectric properties of Co-substituted Li-Ni-Zn nanostructured ferrites prepared through chemical route. Int. J. Comput. Appl. 45, 975–8887 (2012)

    Google Scholar 

  73. B. Zhao, W. Zhao, G. Shao, B. Fan, R. Zhang, Corrosive synthesis and enhanced electromagnetic absorption properties of hollow porous Ni/SnO2 hybrids. Dalton Trans. 44, 15984–15993 (2015)

    CAS  Google Scholar 

  74. Z. Wang, L. Wu, J. Zhou, W. Cai, B. Shen, Z. Jiang, Magnetite nanocrystals on multiwalled carbon nanotubes as a synergistic microwave absorber. J. Phys. Chem. C 117, 5446–5452 (2013)

    CAS  Google Scholar 

  75. A.N. Lagarkov, A.K. Sarychev, Y.R. Smychkovich, A.P. Vinogradov, Effective medium theory for microwave dielectric constant and magnetic permeability of conducting stick composites. J. Electromagn. Wave 6, 1159–1176 (1992)

    Google Scholar 

  76. Z. He, X. Zhang, M. Chen, M. Li, Y. Gu, Z. Zhang, Q. Li, Effect of the filler structure of carbon nanomaterials on the electrical, thermal, and rheological properties of epoxy composites. J. Appl. Polym. Sci. 129, 3366–3372 (2013)

    CAS  Google Scholar 

  77. K. Singh, A. Ohlan, P. Saini, S.K. Dhawan, Poly (3,4-ethylenedioxythiophene) γ-Fe2O3 polymer composite–super paramagnetic behavior and variable range hopping 1D conduction mechanism–synthesis and characterization. Polym. Adv. Technol. 19, 229–236 (2008)

    CAS  Google Scholar 

  78. K. Singh, A. Ohlan, A.K. Bakhshi, S.K. Dhawan, Synthesis of conducting ferromagnetic nanocomposite with improved microwave absorption properties. Mater. Chem. Phys. 119, 201–207 (2010)

    CAS  Google Scholar 

  79. J. Huo, L. Wang, H. Yu, Polymer nanocomposites for electromagnetic wave absorption. J. Mater. Sci. 44, 3917–3927 (2009)

    CAS  Google Scholar 

  80. W. Wang, Y. Wang, Z. Lu, R. Cheng, H. Zheng, Hollow ZnO/ZnFe2O4 microspheres anchored graphene aerogels as a high-efficiency microwave absorber with thermal insulation and hydrophobic performances. Carbon 203, 397–409 (2023)

    CAS  Google Scholar 

  81. N. Wang, Y. Wang, Z. Lu, R. Cheng, L. Yang, Y. Li, Hierarchical core-shell FeS2/Fe7S8@ C microspheres embedded into interconnected graphene framework for high-efficiency microwave attenuation. Carbon 202, 254–264 (2023)

    CAS  Google Scholar 

  82. Y. Wang, X. Di, J. Chen, L. She, H. Pan, B. Zhao, R. Che, Multi-dimensional C@ NiCo-LDHs@ Ni aerogel: Structural and componential engineering towards efficient microwave absorption, anti-corrosion and thermal-insulation. Carbon 191, 625–635 (2022)

    CAS  Google Scholar 

  83. R. Cheng, Y. Wang, X. Di, Z. Lu, P. Wang, X. Wu, Heterostructure design of MOFs derived Co9S8/FeCoS2/C composite with efficient microwave absorption and waterproof functions. J. Mater. Sci. Technol. 129, 15–26 (2022)

    Google Scholar 

  84. K. Teber, T. Cil, B. Yilmaz, D. Eraslan, G. Uysal, A.H. Surucu, R. Baykal, Bansal, manganese and zinc spinel ferrites blended with multi-walled carbon nanotubes as microwave absorbing materials. Aerospace 4, 2 (2017)

    Google Scholar 

  85. A.M. Gama, M.C. Rezende, C.C. Dantas, Dependence of microwave absorption properties on ferrite volume fraction in MnZn ferrite/rubber radar absorbing materials. J. Magn. Magn. Mater. 323, 2782–2785 (2011)

    CAS  Google Scholar 

  86. S. Biswas, G.P. Kar, S. Bose, Microwave absorbers designed from PVDF/SAN blends containing multiwall carbon nanotubes anchored cobalt ferrite via a pyrene derivative. J. Mater. Chem. A 3, 12413–12426 (2015)

    CAS  Google Scholar 

  87. Y. Wang, Y. Huang, Q. Wang, Q. He, L. Chen, Preparation and electromagnetic properties of polyaniline(polypyrrole)-BaFe12O19/Ni0.8Zn0.2Fe2O4 ferrite nanocomposites. Appl. Surf. Sci. 259, 486–493 (2012)

    CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (Anjana), acknowledges CSIR, India for financial support (09/045(1600)/2018-EMR-1). Financial support from Institution of Eminence (Ref. No./IoE/2021/12/FRP), University of Delhi and the Alexander von Humboldt Foundation (through its Research Group Linkage programme) is also gratefully acknowledged. Authors also thank the University of Delhi’s USIC for providing the characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amita Chandra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1329 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anjana, Vyas, M.K. & Chandra, A. Flexible electromagnetic absorber in X-band using a polymer electrolyte having mixed conduction. Journal of Materials Research 38, 2422–2438 (2023). https://doi.org/10.1557/s43578-023-00973-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-00973-3

Keywords

Navigation