Skip to main content

Advertisement

Log in

Bio-assisted Hydrothermal Synthesis and Characterization of MnWO4 Nanorods for High-Performance Supercapacitor Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

MnWO4 nanorods have been successfully synthesized using a facile, cost-effective DNA-templated hydrothermal method. The effect of the hydrothermal reaction time and DNA template were systematically examined, and both were found to affect the surface morphology of the MnWO4. The prepared specimens were further investigated by x-ray diffraction analysis, Fourier transform-infrared spectroscopy, confocal Raman spectroscopy, high-resolution scanning electron microscopy, and high-resolution transmission electron microscopy. The morphological studies further confirmed formation of MnWO4 nanorod structure (MW-3 specimen) with dimensional size and length of 110 nm and 40 nm, respectively. Electrochemical investigations on the MnWO4 (MW-3 specimen) electrode revealed high specific capacitance of 386 F g−1 at scan rate of 5 mV s−1 with 90% capacitance retention after 2000 cycles and further excellent rate capability. These findings suggest that such MnWO4 nanorod electrode would be promising candidates for use in energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.S. Kumari, P. Prabhakar Rao, S. Sameera, V. James, and P. Koshy, Mater. Res. Bull. 70, 93 (2015).

    Article  CAS  Google Scholar 

  2. Q. Song and Z.J. Zhang, J. Am. Chem. Soc. 126, 6164 (2004).

    Article  CAS  Google Scholar 

  3. R. Narayanan and M.A. El-Sayed, Nano Lett. 4, 343 (2004).

    Article  Google Scholar 

  4. C. Ji, F. Liu, L. Xu, and S. Yang, J. Mater. Chem. A 5, 5568 (2017).

    Article  CAS  Google Scholar 

  5. S.R. Ede and S. Kundu, ACS Sustain. Chem. Eng. 3, 2321 (2015).

    Article  CAS  Google Scholar 

  6. W.B. Hu, X.L. Nie, and Y.Z. Mi, Mater. Charact. 61, 85 (2009).

    Article  Google Scholar 

  7. S. Mahdi, M. Rahimi-Nasrabadi, and M. Khalilian-Shalamzari, Appl. Surf. Sci. 263, 745 (2012).

    Article  Google Scholar 

  8. X. Xing, Y. Gui, G. Zhang, and C. Song, Electrochim. Acta 157, 15 (2015).

    Article  CAS  Google Scholar 

  9. Y. Su, B. Zhu, K. Guan, S. Gao, L. Lv, C. Du, L. Peng, and L. Hou, J. Phys. Chem. C 116, 18508 (2012).

    Article  CAS  Google Scholar 

  10. Y. Zhou, H. Yao, Q. Zhang, J. Gong, S. Liu, and S. Yu, Society 48, 1082 (2009).

    CAS  Google Scholar 

  11. L.H. Hoang, N.T.M. Hien, W.S. Choi, Y.S. Lee, K. Taniguchi, T. Arima, S. Yoon, X.B. Chena, and I.S. Yang, J. Raman Spectrosc. 41, 1005 (2010).

    Article  CAS  Google Scholar 

  12. S.M.M. Zawawi, R. Yahya, A. Hassan, H.N.M.E. Mahmud, and M.N. Daud, Chem. Cent. J. 7, 80 (2013).

    Article  Google Scholar 

  13. H.-W. Shim, I.-S. Cho, K.S. Hong, A.-H. Lim, and D.-W. Kim, J. Phys. Chem. C 115, 16228 (2011).

    Article  CAS  Google Scholar 

  14. H.W. Shim, A.H. Lim, J.C. Kim, G.H. Lee, and D.W. Kim, Chem. Asian J. 8, 2851 (2013).

    Article  CAS  Google Scholar 

  15. S. Muthamizh, R. Suresh, K. Giribabu, R. Manigandan, S. Praveen Kumar, S. Munusamy, and V. Narayanan, J. Alloys Compd. 619, 601 (2015).

    Article  CAS  Google Scholar 

  16. M. Vosoughifar, J. Mater. Sci. Mater. Electron. 28, 2135 (2017).

    Article  CAS  Google Scholar 

  17. J. Ungelenk, S. Roming, P. Adler, W. Schnelle, J. Winterlik, C. Felser, and C. Feldmann, Solid State Sci. 46, 89 (2015).

    Article  CAS  Google Scholar 

  18. H. Zhou, Y. Yiu, M.C. Aronson, and S.S. Wong, J. Solid State Chem. 181, 1539 (2008).

    Article  CAS  Google Scholar 

  19. U. Nithiyanantham, S.R. Ede, T. Kesavan, P. Ragupathy, M.D. Mukadam, S.M. Yusuf, and S. Kundu, RSC Adv. 4, 38169 (2014).

    Article  CAS  Google Scholar 

  20. E. Zhang, Z. Xing, J. Wang, Z. Ju, and Y. Qian, RSC Adv. 2, 6748 (2012).

    Article  CAS  Google Scholar 

  21. W. Tong, L. Li, W. Hu, T. Yan, X. Guan, and G. Li, J. Phys. Chem. C 114, 15298 (2010).

    Article  CAS  Google Scholar 

  22. S. Lei, K. Tang, Z. Fang, Y. Huang, and H. Zheng, Nanotechnology 16, 2407 (2005).

    Article  CAS  Google Scholar 

  23. M.A.P. Almeida, L.S. Cavalcante, M.S. Li, J.A. Varela, and E. Longo, J. Inorg. Organomet. Polym Mater. 22, 264 (2012).

    Article  CAS  Google Scholar 

  24. S.-J. Chen, X.-T. Chen, Z. Xue, J.-H. Zhou, J. Li, J.-M. Hong, and X.-Z. You, J. Mater. Chem. 13, 1132 (2003).

    Article  CAS  Google Scholar 

  25. W.B. Hu, X.L. Nie, and Y.Z. Mi, Mater. Charact. 61, 85 (2010).

    Article  CAS  Google Scholar 

  26. S. Thongtem, S. Wannapop, and T. Thongtem, Trans. Nonferrous Met. Soc. China 19, S100 (2009).

    Article  CAS  Google Scholar 

  27. F. Li, X. Xu, J. Huo, and W. Wang, Mater. Chem. Phys. 167, 22 (2015).

    Article  CAS  Google Scholar 

  28. Y. Xie, D. Kocaefe, C. Chen, and Y. Kocaefe, J. Nanomater. 2016, 1 (2016).

    Article  Google Scholar 

  29. C.F. Monson and A.T. Woolley, Nano Lett. 3, 359 (2003).

    Article  CAS  Google Scholar 

  30. U.B. Sleytr, P. Messner, D. Pum, and M. Sára, Angew. Chemie Int. Ed. 38, 1034 (1999).

    Article  CAS  Google Scholar 

  31. B.Y. Huang, A. Yu, C. Huang, L. Gan, X. Zhao, Y. Lin, B. Zhang, and T. Tbl, 4095, 627 (1999)

  32. S. Ifuku, M. Tsuji, M. Morimoto, H. Saimoto, and H. Yano, Biomacromol 10, 2714 (2009).

    Article  CAS  Google Scholar 

  33. I. Yamashita, Thin Solid Films 393, 12 (2001).

    Article  CAS  Google Scholar 

  34. A. Zinchenko, Y. Miwa, L.I. Lopatina, V.G. Sergeyev, S. Murata, and A.C.S. Appl, Mater. Interfaces 6, 3226 (2014).

    Article  CAS  Google Scholar 

  35. S.R. Ede, S. Kundu, and A.C.S. Sustain, Chem. Eng. 3, 2321 (2015).

    CAS  Google Scholar 

  36. C. Fang, Y. Fan, J.M. Kong, G.J. Zhang, L. Linn, and S. Rafeah, Sensors Actuators B Chem. 126, 684 (2007).

    Article  CAS  Google Scholar 

  37. R. Seidel, L.C. Ciacchi, M. Weigel, W. Pompe, and M. Mertig, J. Phys. Chem. B 108, 10801 (2004).

    Article  CAS  Google Scholar 

  38. J. Su and F. Gao, Mater. Lett. 108, 58 (2013).

    Article  CAS  Google Scholar 

  39. U. Nithiyanantham, A. Ramadoss, S.R. Ede, and S. Kundu, Nanoscale 6, 8010 (2014).

    Article  CAS  Google Scholar 

  40. D. Nyamjav and A. Ivanisevic, Biomaterials 26, 2749 (2005).

    Article  CAS  Google Scholar 

  41. Q. Gu, C. Cheng, S. Suryanarayanan, K. Dai, and D.T. Haynie, Phys. E Low Dimens. Syst. Nanostruct. 33, 92 (2006).

    Article  CAS  Google Scholar 

  42. Q. Lu, F. Gao, and S. Komarneni, J. Am. Chem. Soc. 126, 54 (2004).

    Article  CAS  Google Scholar 

  43. J. Yesuraj, V. Elumalai, M. Bhagavathiachari, A.S. Samuel, E. Elaiyappillai, and M. Johnson, J. Electroanal. Chem. 797, 78 (2017).

    Article  Google Scholar 

  44. M. Daturi, G. Busca, M.M. Borel, F.-C. Cedex, I. Chimica, V. Uni, V. Geno, P.J.F. Kennedy, V. Igeno, C. Industriale, and V. Uni, 5647, 4358 (1997)

  45. S. Saranya, R.K. Selvan, and N. Priyadharsini, Appl. Surf. Sci. 258, 4881 (2012).

    Article  CAS  Google Scholar 

  46. M.N. Iliev, M.M. Gospodinov, and A.P. Litvinchuk, Phys. Rev. B 80, 4 (2009).

    Article  Google Scholar 

  47. M. Selvamani and U. Polit, J. Mater. Chem. 22, 22642 (2016).

    Google Scholar 

  48. K. Krishnamoorthy, P. Pazhamalai, G.K. Veerasubramani, and S.J. Kim, J. Power Sources 321, 112 (2016).

    Article  CAS  Google Scholar 

  49. H. Chen, M. Zhou, T. Wang, F. Li, and Y.X. Zhang, J. Mater. Chem. A 4, 10786 (2016).

    Article  CAS  Google Scholar 

  50. F. Xu, R. Cai, Q. Zeng, C. Zou, D. Wu, F. Li, X. Lu, Y. Liang, and R. Fu, J. Mater. Chem. 21, 1970 (2011).

    Article  CAS  Google Scholar 

  51. S. Saranya, S.T. Senthilkumar, K.V. Sankar, and R.K. Selvan, J. Electroceramics 28, 220 (2012).

    Article  CAS  Google Scholar 

  52. J. Tang, J. Shen, N. Li, and M. Ye, J Alloys Compd. 666, 15 (2016).

    Article  CAS  Google Scholar 

  53. H. Kim and B.N. Popov, J. Electrochem. Soc. 150, D56 (2003).

    Article  CAS  Google Scholar 

  54. P. Ragupathy, H.N. Vasan, and N. Munichandraiah, J. Electrochem. Soc. 155, A34 (2007).

    Article  Google Scholar 

  55. P. Yu, X. Zhang, Y. Chen, and Y. Ma, Mater. Lett. 64, 61 (2010).

    Article  CAS  Google Scholar 

  56. K.H. Chang, C.C. Hu, C.M. Huang, Y.L. Liu, and C.I. Chang, J. Power Sources 196, 2387 (2011).

    Article  CAS  Google Scholar 

  57. N.M. Shinde, A.D. Jagadale, V.S. Kumbhar, T.R. Rana, J.H. Kim, and C.D. Lokhande, Korean J. Chem. Eng. 32, 974 (2015).

    Article  CAS  Google Scholar 

  58. S. Yao, F. Qu, G. Wang, and X. Wu, J. Alloys Compd. 724, 695 (2017).

    Article  CAS  Google Scholar 

  59. K.V. Sankar and R.K. Selvan, J. Power Sources 275, 399 (2015).

    Article  CAS  Google Scholar 

  60. R. Wang, M. Han, Q. Zhao, Z. Ren, X. Guo, C. Xu, N. Hu, and L. Lu, Sci. Rep. 7, 44562 (2017).

    Article  CAS  Google Scholar 

  61. K. Yang, K. Cho, D.S. Yoon, and S. Kim, Sci. Rep. 7, 40163 (2017).

    Article  CAS  Google Scholar 

  62. J. Yesuraj and S.A. Suthanthiraraj, J. Mol. Struct. 1181, 131 (2019).

    Article  CAS  Google Scholar 

  63. J.G. Wang, Y. Yang, Z.H. Huang, and F. Kang, Carbon N. Y. 61, 190 (2013).

    Article  CAS  Google Scholar 

  64. S. Denga, D. Suna, C. Wua, H. Wanga, J. Liua, Y. Suna, and H. Yana, Electrochim. Acta 111, 707 (2013).

    Article  Google Scholar 

  65. X.W. Wang, D.L. Zheng, P.Z. Yang, X.E. Wang, Q.Q. Zhu, P.F. Ma, and L.Y. Sun, Chem. Phys. Lett. 667, 260 (2017).

    Article  CAS  Google Scholar 

  66. J. Liu, J. Jiang, M. Bosman, and H.J. Fan, J. Mater. Chem. 22, 2419 (2012).

    Article  CAS  Google Scholar 

  67. J. Zhang, Y. Yu, L. Liu, and Y. Wu, Nanoscale 5, 3052 (2013).

    Article  CAS  Google Scholar 

  68. J. Xiao and S. Yang, J. Mater. Chem. 22, 12253 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Yesuraj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 210 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yesuraj, J., Elanthamilan, E., Muthuraaman, B. et al. Bio-assisted Hydrothermal Synthesis and Characterization of MnWO4 Nanorods for High-Performance Supercapacitor Applications. J. Electron. Mater. 48, 7239–7249 (2019). https://doi.org/10.1007/s11664-019-07539-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07539-2

Keywords

Navigation