Skip to main content
Log in

Analysis of a Direct-Bandgap GeSn-Based MQW Transistor Laser for Mid-Infrared Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We propose the design and analysis of a group-IV material-based (Ge0.84Sn0.16/Si0.09Ge0.8Sn0.11) multiple quantum wells (MQW) transistor laser (TL) for mid-infrared applications. The base region incorporates Ge0.84Sn0.16/Si0.09Ge0.8Sn0.11 MQW structures pseudomorphically grown on silicon through GeSn virtual substrate, compatible with CMOS platforms for cost-effective integration of electronic and photonic circuits. With the introduction of a certain amount of tin (α-Sn) content (Sn > 6%) into germanium (Ge), GeSn alloy shows direct bandgap, thereby achieving the population inversion condition. In addition, the use of MQW structures such as the active region enhances gain due to quantum–confinement effects, and better carrier utilization over its bulk counterpart. A comparison is made between the theoretical finding for the proposed Ge0.84Sn0.16 MQW TL and the available experimental and theoretical data for currently employed InGaAs-based single quantum well (SQW) and MQW TLs. Estimated results show that a lower threshold base current of ∼ 2.65 mA and high modulation BW of ∼ 53 GHz can be achieved, which ensures the proposed GeSn-based MQW TL can be a good alternative for III–V-based TL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Holonyak and M. Feng, IEEE Spectr. 43, 50 (2006).

    Article  Google Scholar 

  2. H.W. Then, M. Feng, and N. Holonyak, Proc. IEEE 101, 2271 (2013).

    Article  Google Scholar 

  3. M. Feng, N. Holonyak, B. Chu-Kung, G. Walter, and R. Chan, Appl. Phys. Lett. 84, 4792 (2004).

    Article  Google Scholar 

  4. R. Basu, B. Mukhopadhyay, and P.K. Basu, Semicond. Sci. Technol. 26, 105014 (2011).

    Article  Google Scholar 

  5. I. Taghavi, H. Kaatuzian, and J.P. Leburton, Integrated photonics research, silicon and nanophotonics, p. 5 (2012).

  6. P.K. Basu, B. Mukhopadhyay, and R. Basu, IET Optoelectron. 7, 71 (2013).

    Article  Google Scholar 

  7. O. Esame, Y. Gurbuz, I. Tekin, and A. Bozkurt, Microelectron. J. 35, 901 (2004).

    Article  Google Scholar 

  8. P.K. Basu, B. Mukhopadhyay, and R. Basu, Semiconductor Laser Theory (CRC Press, Boca Raton, 2015).

  9. S. Zaima, O. Nakatsuka, T. Asano, T. Yamaha, S. Ike, A. Suzuki, K. Takahashi, Y. Nagae, M. Kurosawa, W. Takeuchi, Y. Shimura, and M. Sakashita, in 2016 IEEE Photonics Society Summer Topical Meeting Series, SUM 2016, p. 37 (2016).

  10. V. Chakraborty, S. Dey, R. Basu, B. Mukhopadhyay, and P.K. Basu, Opt. Quant. Electron. 49, 1 (2017).

    Article  Google Scholar 

  11. P. Moontragoon, R.A. Soref, and Z. Ikonic, J. Appl. Phys. 112, 073106 (2012).

    Article  Google Scholar 

  12. H. Kumar and R. Basu, IEEE Sens. J. 18, 9180 (2018).

    Article  Google Scholar 

  13. S. Wirths, R. Geiger, N. Von Den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J.M. Hartmann, and H. Sigg, Nat. Photonics 9, 88 (2015).

    Article  Google Scholar 

  14. B. Dutt, S. Member, H. Lin, D.S. Sukhdeo, S. Member, B.M. Vulovic, S. Gupta, D. Nam, S. Member, K.C. Saraswat, and J.S.H. Jr, IEEE J. Sel. Top. Quantum Electron. 19, 1502706 (2013).

    Article  Google Scholar 

  15. M. Oheme and E. Al, Appl. Phys. 101, 2 (2012).

    Google Scholar 

  16. B.-J. Huang, J.-H. Lin, H.H. Cheng, and G.-E. Chang, Opt. Lett. 43, 1215 (2018).

    Article  Google Scholar 

  17. R. Basu, V. Chakraborty, B. Mukhopadhyay, and P.K. Basu, Opt. Quantum. Electron. 47, 387 (2015).

    Article  Google Scholar 

  18. G. Chang, R. Basu, and B. Mukhopadhyay, IEEE J. Sel. Top. Quantum Electron. 22, 425 (2016).

    Article  Google Scholar 

  19. A.K. Pandey, R. Basu, and G.E. Chang, IEEE Sens. J. 18, 5842 (2018).

    Article  Google Scholar 

  20. G.-E. Chang, S.-W. Chang, and S.L. Chuang, IEEE J. Quantum Electron. 46, 1813 (2010).

    Article  Google Scholar 

  21. R. Ranjan and M.K. Das, Opt. Quantum Electron. 48, 1 (2016).

    Article  Google Scholar 

  22. S.W. Chang and S.L. Chuang, IEEE J. Quantum Electron. 43, 249 (2007).

    Article  Google Scholar 

  23. P. Moontragoon, Z. Ikonić, and P. Harrison, Semicond. Sci. Technol. 22, 742 (2007).

    Article  Google Scholar 

  24. G.-E. Chang, S.-W. Chang, and S.L. Chuang, Opt. Express 17, 11246 (2009).

    Article  Google Scholar 

  25. M. Giehler, H. Kostial, R. Hey, and H.T. Grahn, J. Appl. Phys. 96, 4755 (2004).

    Article  Google Scholar 

  26. J.I. Pankove, Phys. Rev. Lett. 4, 454 (1960).

    Article  Google Scholar 

  27. J.I. Pankove, Prog. Semicond. 9, 48 (1965).

    Google Scholar 

  28. Silvaco, ATLAS User’s Manual, Silvaco International, Santa Clara, CA, vol. 1 and 2, p. 1 (2015).

  29. B. Faraji, W. Shi, D.L. Pulfrey, and L. Chrostowski, IEEE J. Sel. Top. Quantum Electron. 15, 3 (2009).

    Article  Google Scholar 

  30. N. Kumar, B. Mukhopadhyay, and R. Basu, Opt. Quantum Electron. 50, 1 (2018).

    Article  Google Scholar 

  31. R. Basu, B. Mukhopadhyay, and P.K. Basu, IEEE Photonics J. 4, 1571 (2012).

    Article  Google Scholar 

  32. R. Basu, B. Mukhopadhyay, and P.K. Basu, Semicond. Sci. Technol. 27, 015022 (2012).

    Article  Google Scholar 

  33. R. Basu, B. Mukhopadhyay, and P.K. Basu, J. Appl. Phys. 111, 083103 (2012).

    Article  Google Scholar 

  34. M. Feng, N. Holonyak, H.W. Then, and G. Walter, Appl. Phys. Lett. 91, 10 (2007).

    Google Scholar 

  35. H.W. Then, M. Feng, and N. Holonyak, J. Appl. Phys. 107, 094509 (2010).

    Article  Google Scholar 

  36. M. Feng, N. Holonyak, A. James, K. Cimino, G. Walter, and R. Chan, Appl. Phys. Lett. 89, 1 (2006).

    Google Scholar 

  37. I. Taghavi, H. Kaatuzian, and J.P. Leburton, Appl. Phys. Lett. 100, 231114 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

Jaspinder Kaur would like to thank MHRD (India), for providing financial support in the form of Junior Research Fellowship (JRF). All of the authors are thankful to Professor Praveen Kumar, Director, NIT Delhi, for his encouragement and support to undertake this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaspinder Kaur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basu, R., Kaur, J. & Sharma, A.K. Analysis of a Direct-Bandgap GeSn-Based MQW Transistor Laser for Mid-Infrared Applications. J. Electron. Mater. 48, 6335–6346 (2019). https://doi.org/10.1007/s11664-019-07418-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07418-w

Keywords

Navigation