Skip to main content

Advertisement

Log in

Thomson Power in the Model of Constant Transport Coefficients for Thermoelectric Elements

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The analytical expressions derived using simple models provide clear insights on the processes in thermoelectric coolers. The model of constant transport coefficients (CTC) considers that the thermal conductivity, the electrical resistivity and the Thomson coefficient are constants. The version of the CTC model that has become standard in the description of the global energy balance may yield grossly inaccurate predictions for thermoelectric cooling applications. We show that these failures can be avoided by accurately describing the Thomson effect in the energy balance. Calculations for bismuth telluride semiconductors show that deviations as large as a factor of three in the Thomson power contribution to the global balance may be found under conditions of practical interest. Compared to the standard version (valid only for moderate temperature gradients), the improved version (valid for highly nonlinear temperature distributions) of the CTC model predicts that a larger fraction of the power released by the electric current leaves the thermoelectric element through the hot boundary. Significant differences in the estimations of the cooling capacity and the coefficient of performance of the thermoelectric cooler are also observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.H. Chen, C.Y. Liao, and C.I. Hung, Appl. Energy 89, 464 (2012). https://doi.org/10.1016/j.apenergy.2011.08.022.

    Article  Google Scholar 

  2. H.S. Lee, Energy 56, 61 (2013). https://doi.org/10.1016/j.energy.2013.04.049.

    Article  Google Scholar 

  3. A. Martínez, D. Astrain, A. Rodríguez, and P. Aranguren, Appl. Thermal Engn. 95, 339 (2016). https://doi.org/10.1016/j.applthermaleng.2015.11.021.

    Article  Google Scholar 

  4. X.D. Wang, Y.X. Huang, C.H. Cheng, and D.T.W. Lin, Energy 47, 488 (2012). https://doi.org/10.1016/j.energy.2012.09.019.

    Article  Google Scholar 

  5. E. Kanimba, M. Pearson, J. Sharp, D. Stokes, and S. Priya, Energy 142, 813 (2018). https://doi.org/10.1016/j.energy.2017.10.067.

    Article  Google Scholar 

  6. J.H. Meng, X.D. Wang, and X.X. Zhang, Appl. Energy 108, 340 (2013). https://doi.org/10.1016/j.apenergy.2013.03.051.

    Article  Google Scholar 

  7. S.C. Kaushik and S. Manikandan, Cryogenics 72, 57 (2015). https://doi.org/10.1016/j.cryogenics.2015.08.004.

    Article  Google Scholar 

  8. S. Manikandan and S.C. Kaushik, Energy 100, 227 (2016). https://doi.org/10.1016/j.energy.2016.01.092.

    Article  Google Scholar 

  9. P.E. Ruiz-Ortega and M.A. Olivares-Robles, Entropy 19, 312 (2017). https://doi.org/10.3390/e19070312.

    Article  Google Scholar 

  10. G. Fraisse, J. Ramousse, D. Sgorlon, and C. Goupil, Energy Convers. Manag. 65, 351 (2013). https://doi.org/10.1016/j.enconman.2012.08.022.

    Article  Google Scholar 

  11. G. Fraisse, M. Lazard, C. Goupil, and J.Y. Serrat, Int. J. Heat Mass Transf. 53, 3503 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2010.04.011.

    Article  Google Scholar 

  12. G. Min, D.M. Rowe, and K. Kontostavlakis, J. Phys. D Appl. Phys. 37, 1301 (2004). https://doi.org/10.1088/0022-3727/37/8/020.

    Article  Google Scholar 

  13. R. Arora and R. Arora, Int. J. Energy Res. 42, 1760 (2018). https://doi.org/10.1002/er.3988.

    Article  Google Scholar 

  14. Y. Feng, L. Chen, F. Meng, and F. Sun, Entropy 20, 29 (2018). https://doi.org/10.3390/e20010029.

    Article  Google Scholar 

  15. D. Zhao and G. Tan, Appl. Therm. Eng. 66, 15 (2014). https://doi.org/10.1016/j.applthermaleng.2014.01.074.

    Article  Google Scholar 

  16. F. Meng, L. Chen, and F. Sun, Energy 36, 3513 (2011). https://doi.org/10.1016/j.energy.2011.03.057.

    Article  Google Scholar 

  17. K. Zabrocki, C. Goupil, H. Ouerdane, Y. Apertet, W. Seifert, and E. Müller in, Continuum Theory and Modeling of Thermoelectric Elements, ed. by C. Goupil (Weinheim: Wiley-VCH, 2016), pp. 75–156, https://doi.org/10.1002/9783527338405.ch2.

  18. A.F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling (London: Infosearch, 1957).

    Google Scholar 

  19. H.S. Kim, W. Liu, and Z. Ren, J. Appl. Phys. 118, 115103 (2015). https://doi.org/10.1063/1.4930869.

    Article  Google Scholar 

  20. J. Chen and Z. Yan, J. Appl. Phys. 79, 8823 (1996). https://doi.org/10.1063/1.362507.

    Article  Google Scholar 

  21. A. Chakraborty, B.B. Saha, S. Koyama, and K.C. Ng, Int. J. Heat Mass Transf. 49, 3547 (2006). https://doi.org/10.1016/j.ijheatmasstransfer.2006.02.047.

    Article  Google Scholar 

  22. J. Garrido, J. Phys.: Condens. Matter 21, 155802 (2009). https://doi.org/10.1088/0953-8984/21/15/155802.

    Google Scholar 

  23. J. Garrido and A. Casanovas, J. Appl. Phys. 115, 123517 (2014). https://doi.org/10.1063/1.4869776.

    Article  Google Scholar 

  24. J. Garrido, J. Phys. Chem. B 106, 10722 (2002). https://doi.org/10.1021/jp020196k.

    Article  Google Scholar 

  25. J. Garrido, J. Phys. Chem. B 108, 18336 (2004). https://doi.org/10.1021/jp049264o.

    Article  Google Scholar 

  26. J. Garrido and A. Casanovas, J. Electron. Mater. 41, 1990 (2012). https://doi.org/10.1007/s11664-012-1966-0.

    Article  Google Scholar 

  27. J.A. Manzanares, M. Jokinen, and J. Cervera, J. Non-Equilib. Thermodyn. 40, 211 (2015). https://doi.org/10.1515/jnet-2015-0026.

    Article  Google Scholar 

  28. J.L. Pérez-Aparicio, R. Palma, and R.L. Taylor, Int. J. Heat Mass Transf. 55, 1363 (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2011.08.031.

    Article  Google Scholar 

  29. B.L. Wang, Appl. Thermal Eng. 110, 136 (2017). https://doi.org/10.1016/j.applthermaleng.2016.08.115.

    Article  Google Scholar 

  30. T. Zhang, J. Electron. Mater. 46, 14 (2017). https://doi.org/10.1007/s11664-016-4932-4.

    Article  Google Scholar 

  31. X.C. Xuan, K.C. Ng, C. Yap, and H.T. Chua, Int. J. Heat Mass Transf. 45, 5159 (2017). https://doi.org/10.1016/S0017-9310(02)00217-X.

    Article  Google Scholar 

  32. I. Lashkevych, J.E. Velázquez, O.Y. Titov, and Y.G. Gurevich, J. Electron. Mater. 47, 3189 (2018). https://doi.org/10.1007/s11664-018-6205-x.

    Article  Google Scholar 

  33. C. Ju, G. Dui, H.H. Zheng, and L. Xin, Energy 124, 249 (2017). https://doi.org/10.1016/j.energy.2017.02.020.

    Article  Google Scholar 

  34. Y. Apertet and C. Goupil, Int. J. Thermal Sci. 104, 225 (2016). https://doi.org/10.1016/j.ijthermalsci.2016.01.009.

    Article  Google Scholar 

  35. C.A. Badillo-Ruiz, M.A. Olivares-Robles, and P.E. Ruiz-Ortega, Entropy 20, 118 (2018). https://doi.org/10.3390/e20020118.

    Article  Google Scholar 

  36. Y. Ge, Z. Liu, H. Sun, and W. Liu, Energy 147, 1060 (2018). https://doi.org/10.1016/j.energy.2018.01.099.

    Article  Google Scholar 

  37. O. Yamashita, J. Mater. Sci. 40, 6439 (2005). https://doi.org/10.1007/s10853-005-1712-6.

    Article  Google Scholar 

  38. D. Ebling, K. Bartholomé, M. Bartel, and M. Jägle, J. Electron. Mat. 39, 1376 (2010). https://doi.org/10.1007/s11664-010-1331-0.

    Article  Google Scholar 

  39. H.J. Goldsmid, Electronic Refrigeration (London: Pion, 1986).

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministerio de Ciencia, Innovación y Universidades and European Regional Development Funds through (project PGC2018-097359-B-100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Manzanares.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garrido, J., Casanovas, A. & Manzanares, J.A. Thomson Power in the Model of Constant Transport Coefficients for Thermoelectric Elements. J. Electron. Mater. 48, 5821–5826 (2019). https://doi.org/10.1007/s11664-019-07351-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07351-y

Keywords

Navigation