Skip to main content

Advertisement

Log in

Overcoming Mobility Lifetime Product Limitations in Vertical Bridgman Production of Cadmium Zinc Telluride Detectors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Cadmium zinc telluride (CZT) possesses excellent material properties for a wide range of applications where room temperature operability, durability, and high efficiency are required. However, because CZT is a challenging material to produce in useful quantities, the growth and fabrication costs have remained high, creating an economic challenge for vendors. While the traveling heater method (THM) is the predominant means of commercial CZT crystal growth, the vertical Bridgman method (VB) is an attractive alternative due to its relatively fast growth rate. However, VB grown CZT has yet to compete with THM grown CZT, particularly in terms of charge collection efficiencies, where the charge collection efficiency is characterized by the single carrier electron mobility lifetime (μτe) product. Despite efforts to overcome this discrepancy, the μτe product in VB grown CZT has remained an order of magnitude lower than THM. Eliminating this difference would bring VB one step closer to outpacing THM in terms of economic feasibility. This paper discusses the development of a unique technique that combines the advantages of both growth methods to better understand this discrepancy and the underlying mechanisms behind it. CZT ingots were grown from melt via VB with highly off-stoichiometric concentrations of tellurium (Te). Melt mixing via accelerated crucible rotation (ACRT) was applied to compensate for any negative effects associated with off-stoichiometry, i.e. flux inclusions. CZT material has been produced at growth rates commensurate with VB (one ingot/week) and with charge collection efficiencies commensurate with THM (mid 10−2 cm2/V) in long bars typical of commercial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.E. Schlesinger, J.E. Toney, H. Yoon, E.Y. Lee, B.A. Brunett, L. Franks, and R.B. James, Mater. Sci. Eng. R Rep. 32, 103 (2001).

    Article  Google Scholar 

  2. J. Mackenzie, F.J. Kumar, and H. Chen, J. Electron. Mater. 42, 3129 (2013).

    Article  Google Scholar 

  3. J. Mackenzie, H. Chen, S.A. Awadalla, P. Marthandam, B. Redden, G. Bindley, Z. He, D.R. Black, M. Duff, M. Amman, J.S. Lee, P. Luke, M. Groza, and A. Burger, MRS Proc. 1164, 1164 (2009).

    Article  Google Scholar 

  4. H. Shiraki, M. Funaki, Y. Ando, A. Tachibana, S. Kominami, and R. Ohno, IEEE Trans. Nucl. Sci. 56, 1717 (2009).

    Article  Google Scholar 

  5. U.N. Roy, S. Weiler, and J. Stein, J. Cryst. Growth 312, 2840 (2010).

    Article  Google Scholar 

  6. U.N. Roy, S. Weiler, J. Stein, A. Hossain, G.S. Camarda, A.E. Bolotnikov, and R.B. James, J. Cryst. Growth 332, 34 (2011).

    Article  Google Scholar 

  7. R. Triboulet and P. Siffert, CdTe and Related Compounds; Physics, Defects, Hetero- and Nano-Strucutres, Crystal Growth, Surfaces and Applications Part II Crystal Growth, Surfaces and Applications (Amsterdam: Elsevier, 2010).

    Google Scholar 

  8. J. McCoy, Implementation of Accelerated Crucible Rotation in Electrodynamic Gradient Freeze Method for Highly Non-stoichiometric Melt Growth of Cadmium Zinc Telluride Detectors (Pullman: Washington State University, 2018).

    Google Scholar 

  9. C. Buis, E. Gros d′Aillon, A. Lohstroh, G. Marrakchi, C. Jeynes, and L. Verger, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 735, 188 (2014).

    Article  Google Scholar 

  10. P. Rudolph, Cryst. Res. Technol. 52, 1600171 (2017).

    Article  Google Scholar 

  11. N. Audet and M. Cossette, J. Electron. Mater. 34, 683 (2005).

    Article  Google Scholar 

  12. R.O. Bell, N. Hemmat, and F. Wald, Phys. Status Solidi 1, 375 (1970).

    Article  Google Scholar 

  13. K. Zanio, J. Electron. Mater. 3, 327 (1974).

    Article  Google Scholar 

  14. P. Rudolph and M. Mühlberg, Mater. Sci. Eng. B 16, 8 (1993).

    Article  Google Scholar 

  15. P. Capper, J.E. Harris, E. O’Keefe, C.L. Jones, C.K. Ard, P. Mackett, and D. Dutton, Mater. Sci. Eng. B 16, 29 (1993).

    Article  Google Scholar 

  16. P. Capper, Prog. Cryst. Growth Charact. Mater. 28, 1 (1994).

    Article  Google Scholar 

  17. A. Datta, S. Swain, Y. Cui, A. Burger, and K. Lynn, J. Electron. Mater. 42, 3041 (2013).

    Article  Google Scholar 

  18. J. Steininger, A.J. Strauss, and R.F. Brebrick, J. Electrochem. Soc. 117, 1305 (1970).

    Article  Google Scholar 

  19. T. Wang, W. Jie, J. Zhang, G. Yang, D. Zeng, Y. Xu, S. Ma, H. Hua, and K. He, J. Cryst. Growth 304, 313 (2007).

    Article  Google Scholar 

  20. K. Yokota, H. Nakai, K. Satoh, and S. Katayama, J. Cryst. Growth 112, 723 (1991).

    Article  Google Scholar 

  21. Glow discharge mass spectrometry (GDMS) analysis—National Research Council Canada (n.d.).

  22. P. Rudolph, H.J. Koh, N. Schäfer, and T. Fukuda, J. Cryst. Growth 166, 578 (1996).

    Article  Google Scholar 

  23. P. Moskvin, V. Khodakovsky, L. Rashkovetskyi, and A. Stronski, J. Cryst. Growth 310, 2617 (2008).

    Article  Google Scholar 

  24. A.E. Bolotnikov, O.S. Babalola, G.S. Camarda, Y. Cui, A.M. Hossain, E.M. Jackson, H.C. Jackson, J.A. James, K.T. Kohman, A.L. Luryi, and R.B. James, IEEE Trans. Nucl. Sci. 55, 2757 (2008).

    Article  Google Scholar 

  25. A. Kadys, M. Sudzius, K. Jarasiunas, P. Fochuk, P. Feychuk, M.L. Hellin, and D. Verstraeten, Phys. Status Solidi 244, 1675 (2007).

    Article  Google Scholar 

  26. E. Belas, R. Grill, J. Franc, P. Hlídek, V. Linhart, T. Slavíček, and P. Höschl, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 591, 200 (2008).

    Article  Google Scholar 

  27. M. Chu, S. Terterian, D. Ting, C.C. Wang, J.D. Benson, J.H. Dinan, R.B. James, and A. Burger, J. Electron. Mater. 32, 778 (2003).

    Article  Google Scholar 

  28. US7067008B2 (2003).

  29. C. Szeles, Private Communication (2017).

  30. A.E. Bolotnikov, G.S. Camarda, E. Chen, R. Gul, V. Dedic, G. De Geronimo, J. Fried, A. Hossain, J.M. Mackenzie, L. Ocampo, P. Sellin, S. Taherion, E. Vernon, G. Yang, U. El-Hanany, and R.B. James, J. Appl. Phys. 120, 104507 (2016).

    Article  Google Scholar 

  31. J.C. Erickson, H.W. Yao, R.B. James, H. Hermon, and M. Greaves, J. Electron. Mater. 29, 699 (2000).

    Article  Google Scholar 

  32. CMR, Internal Communication (2019).

Download references

Acknowledgments

This work was partially supported by the National Nuclear Security Administration (NNSA) under Grant DE-NA0002565 U.S. Department of Energy and by the Center for Materials Research, Washington State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jedidiah J. McCoy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCoy, J.J., Kakkireni, S., Gilvey, Z.H. et al. Overcoming Mobility Lifetime Product Limitations in Vertical Bridgman Production of Cadmium Zinc Telluride Detectors. J. Electron. Mater. 48, 4226–4234 (2019). https://doi.org/10.1007/s11664-019-07196-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07196-5

Keywords

Navigation