Skip to main content
Log in

Characterization of vertical Bridgman grown Cd0.9Zn0.1Te0.97Se0.03 single crystal for room-temperature radiation detection

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report a modified vertical Bridgman method to grow Cd0.9Zn0.1Te0.97Se0.03 (CZTS) single crystals using in-house zone-refined 7 N (99.99999%) purity elemental precursors for room-temperature radiation detection. CZTS is an economic yet high performance alternative to expensive CdZnTe (CZT) detectors for room-temperature gamma-ray detection. Radiation detector in planar geometry has been fabricated on an 11.0 × 11.0 × 3.0 mm3 CZTS single crystal. A bulk resistivity of 1010 Ω.cm has been achieved without using any compensating dopant. The elemental composition of the grown crystal has been examined using energy-dispersive X-ray (EDX) analysis. Powder X-ray diffraction (XRD) showed formation of zincblende phase with a lattice constant of 6.447 Å, and sharp peaks confirmed the formation of highly crystalline single-phase CZTS crystals. A modified Vegard’s law has been applied to calculate the atomic percentage of Se in the grown crystals from the XRD patterns and compared with the intended and the measured stoichiometry. The electron mobility-lifetime (μτ) product and the drift mobility have been calculated to be 1.5 × 10–3 cm2/V and 710 cm2/V.s, respectively, using alpha spectroscopy. The presented vertical Bridgman growth method uses a single pass through the controlled heating zone in contrast to the previously reported multiple pass growth techniques, thus, reducing the growth duration by two third which would help to further reduce the cost of production of CZTS-based room-temperature detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

source emitting primarily 5486 keV alpha particles. The detector signal is primarily created by electron transit. b Rise-time spectra obtained from preamplifier pulses under same experimental configuration. Inset shows randomly selected typical charge pulses at four different bias voltages. The increasing sharpness indicates faster charge collection as the bias increases

Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. T.E. Schlesinger, J.E. Toney, H. Yoon, E.Y. Lee, B.A. Brunett, L. Franks, R.B. James, Mater. Sci. Eng. R Rep. 32, 103 (2001)

    Article  Google Scholar 

  2. S. Del Sordo, L. Abbene, E. Caroli, A.M. Mancini, A. Zappettini, P. Ubertini, Sensors 9, 3491 (2009)

    Article  Google Scholar 

  3. M. Niraula, K. Yasuda, S. Tsubota, T. Yamaguchi, J. Ozawa, T. Mori, Y. Agata, IEEE Trans. Electron. Devices 66, 518 (2018)

    Article  Google Scholar 

  4. A. Brovko, O. Amzallag, A. Adelberg, L. Chernyak, P.V. Raja, A. Ruzin, Nucl. Instrum. Meth. Phys. Res. A 1004, 165343 (2021)

    Article  CAS  Google Scholar 

  5. G. Lioliou, S. Butera, A.B. Krysa, A.M. Barnett, J. Appl. Phys. 129, 243105 (2021)

    Article  CAS  Google Scholar 

  6. P.M. Johns, J.C. Nino, J. Appl. Phys. 126, 040902 (2019)

    Article  Google Scholar 

  7. B.S. Chaudhari, H. Goto, M. Niraula, K. Yasuada, J. Appl. Phys. 130, 055302 (2021)

    Article  CAS  Google Scholar 

  8. S.O. Kasap, M.Z. Kabir, K. Ramaswami, R. Johanson, R.J. Curry, J. Appl. Phys. 128, 124501 (2020)

    Article  CAS  Google Scholar 

  9. S.K. Chaudhuri, K. Nguyen, R.O. Pak, L. Matei, V. Buliga, M. Groza, A. Burger, K.C. Mandal, IEEE Trans. Nucl. Sci. 61, 793 (2014)

    Article  CAS  Google Scholar 

  10. J. Tang, F. Kislat, H. Krawczynski, Astroparticle Phys. 128, 102563 (2021)

    Article  Google Scholar 

  11. K.C. Mandal, S.H. Kang, M. Choi, A. Kargar, M.J. Harrison, D.S. McGregor, A.E. Bolotnikov, G.A. Carini, G.S. Camarda, R.B. James, IEEE Trans. Nucl. Sci. 35, 1251 (2007)

    Google Scholar 

  12. A. Brovko, P. Rusian, L. Chernyak, A. Ruzin, Appl. Phys Lett. 119, 062103 (2021)

    Article  CAS  Google Scholar 

  13. M. Zahangir Kabir, E.V. Emelianova, V.I. Arkhipov, M. Yunus, S.O. Kasap, G. Adriaenssens, J. Appl. Phys. 99, 124501 (2006)

    Article  Google Scholar 

  14. A.E. Bolotnikov, K. Ackley, G.S. Camarda, Y. Cui, J.F. Eger, G. De Geronimo, C. Finfrock, J. Fried, A. Hossain, W. Lee, M. Prokesch, M. Petryk, J.L. Reiber, U.N. Roy, E. Vernon, G. Yang, R.B. James, IEEE Trans. Nucl. Sci. 62, 3193 (2005)

    Article  Google Scholar 

  15. U.N. Roy, G.S. Camarda, Y. Cui, R. Gul, G. Yang, J. Zazvorka, V. Dedic, J. Franc, J. Franc, R. James, Sci. Rep. 9, 7303 (2019)

    Article  Google Scholar 

  16. U.N. Roy, G.S. Camarda, Y. Cui, R.B. James, Appl. Phys. Lett. 114, 232107 (2019)

    Article  Google Scholar 

  17. J.W. Kleppinger, S.K. Chaudhuri, U.N. Roy, R.B. James, K.C. Mandal, IEEE Trans. Nucl. Sci. 68, 2429 (2021)

    Article  CAS  Google Scholar 

  18. U.N. Roy, G.S. Camarda, Y. Cui, R. Gul, A. Hossain, G. Yang, J. Zazvorka, V. Dedic, J. Franc, R.B. James, Sci. Rep. 9, 1620 (2019)

    Article  CAS  Google Scholar 

  19. S. Hwang, H. Yu, A.E. Bolotnikov, R.B. James, K. Kim, IEEE Trans. Nucl. Sci. 66, 2329 (2019)

    Article  CAS  Google Scholar 

  20. Y.D. Smith, J. Choi, S. Araujo, Proc. SPIE 1114, 11141N (2019)

    Google Scholar 

  21. S.K. Chaudhuri, J.W. Kleppinger, O.F. Karadavut, R. Nag, K.C. Mandal, Curr. Comput.-Aided Drug Des. 11, 827 (2021)

    Google Scholar 

  22. S.K. Chaudhuri, M. Sajjad, J.W. Kleppinger, K.C. Mandal, J. Appl. Phys. 127, 245706 (2020)

    Article  CAS  Google Scholar 

  23. U.N. Roy, G.S. Camarda, Y. Cui, R.B. James, Radiation 1, 123 (2021)

    Article  Google Scholar 

  24. U.N. Roy, G. Camarda, Y. Cui, G. Yang, R.B. James, Sci. Rep. 11, 10338 (2021)

    Article  CAS  Google Scholar 

  25. S.K. Chaudhuri, M. Sajjad, J.W. Kleppinger, K.C. Mandal, IEEE Electron Device Lett. 41, 1336 (2020)

    Article  CAS  Google Scholar 

  26. U.N. Roy, G.S. Camarda, Y. Cui, R.B. James, Appl. Phys. Lett. 118, 152101 (2021)

    Article  CAS  Google Scholar 

  27. M.J. Harrison, A.P. Graebner, W.J. McNeil, D.S. McGregor, J. Cryst. Growth 290, 597 (2006)

    Article  CAS  Google Scholar 

  28. M. Zha, F. Bissoli, A. Zappettini, G. Zuccalli, L. Zanotti, C. Paorici, J. Cryst. Growth 237–239, 1720 (2002)

    Article  Google Scholar 

  29. K. Hecht, Z. Phys. 77, 235 (1932)

    Article  CAS  Google Scholar 

  30. Z. He, G.F. Knoll, D.K. Wehe, J. Appl. Phys. 84, 5566 (1998)

    Article  CAS  Google Scholar 

  31. C.-Y. Chang, B.-H. Tseng, Mater. Sci. Eng. B 49, 1 (1997)

    Article  Google Scholar 

  32. G. Brill, Y. Chen, P.M. Amirtharaj, W. Sarney, D. Chandler-Horowitz, N.K. Dhar, J. Appl. Phys. 34, 655 (2005)

    CAS  Google Scholar 

  33. K.C. Mandal, S. Basu, D.N. Bose, Surf. Sci. 188, 235 (1987)

    Article  CAS  Google Scholar 

  34. K.C. Mandal, S. Basu, D.N. Bose, J. Phys. Chem. 91, 4011 (1987)

    Article  CAS  Google Scholar 

  35. N.F. Mott, R.W. Gurney, Electronic Processes in Ionic Crystals (Oxford Univeristy Press, New York, 1940)

    Google Scholar 

  36. M.A. Lampert, Rep. Prog. Phys. 27, 329 (1964)

    Article  CAS  Google Scholar 

  37. S.K. Chaudhuri, K.J. Zavalla, K.C. Mandal, Appl. Phys. Lett. 102, 031109 (2013)

    Article  Google Scholar 

  38. S.K. Chaudhuri, R.M. Krishna, K.J. Zavalla, L. Matei, V. Buliga, M. Groza, A. Burger, K.C. Mandal, IEEE Trans. Nucl. Sci. 60, 2853 (2013)

    Article  CAS  Google Scholar 

  39. M. Sajjad, S.K. Chaudhuri, J.W. Kleppinger, K.C. Mandal, IEEE Trans. Nucl. Sci. 67, 1946 (2020)

    Article  CAS  Google Scholar 

  40. R.M. Krishna, S.K. Chaudhuri, K.J. Zavalla, K.C. Mandal, Nucl. Instrum. Meth. Phys. Res. A 701, 208 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the X-ray Diffraction Facility at the Department of Chemistry and Biochemistry, UofSC, and Electron Microscopy Center at UofSC for the SEM and EDX Measurements.

Funding

This work was supported by the DOE Office of Nuclear Energy’s Nuclear Energy University Program (NEUP), Grant No. DE-AC07-051D14517 & DE-NE0008662. The work was also supported in part by the Advanced Support Program for Innovative Research Excellence-I (ASPIRE-I), Grant No. 15530- E404 and Support to Promote Advancement of Research and Creativity (SPARC), Grant No. 15530- E422 of the University of South Carolina (UofSC), Columbia, USA.

Author information

Authors and Affiliations

Authors

Contributions

RN contributed to crystal growth, detector fabrication, characterization, and literature survey; SKC was involved in detector fabrication, characterization, data analysis and interpretation, and manuscript preparation; JWK played his part in crystal growth and detector characterization; OFK has carried out crystal growth and detector characterization; KCM contributed to conceptualization, investigation, fund acquisition, supervision, data analysis, and manuscript preparation—review and editing.

Corresponding author

Correspondence to Krishna C. Mandal.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nag, R., Chaudhuri, S.K., Kleppinger, J.W. et al. Characterization of vertical Bridgman grown Cd0.9Zn0.1Te0.97Se0.03 single crystal for room-temperature radiation detection. J Mater Sci: Mater Electron 32, 26740–26749 (2021). https://doi.org/10.1007/s10854-021-07051-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07051-6

Navigation