Skip to main content
Log in

A triple-band, polarization- and incident angle-independent microwave metamaterial absorber with interference theory

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We present the design, fabrication and characterization of an ultrathin triple-band metamaterial absorber (MMA) in the microwave frequencies. The unit cell of the MMA consists of three different sizes of electric split ring resonators (eSRRs) and continuous metal film separated by only 1 mm dielectric substrate. The single-band MMA of this structure is firstly investigated. Then, by tuning the scale factor of the unit cells, the proposed triple-band MMA achieves absorption peaks at 9.85 GHz, 13.05 GHz and 14.93 GHz, respectively. Electric field distributions at three resonant frequencies are investigated to qualitatively analyze the loss mechanism. The further simulated and experimental results indicate that the proposed MMA is also polarization- and incident angle-independent. Finally, the interference theory is introduced to quantitatively analyze the MMA, which provides good insight into the physics behind the absorbing structure. To calculate the absorption rates accurately, we employ a simulation strategy make the near-field coupling between two metallic layers get back (compensation method). The measured absorption spectra show an excellent agreement with the theoretical calculation and simulation results. Therefore, the explanation to the physical mechanism of the triple-band MMA is presented and verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001)

    Article  ADS  Google Scholar 

  2. D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Science 305, 788 (2004)

    Article  ADS  Google Scholar 

  3. J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)

    Article  ADS  Google Scholar 

  4. N. Garcia, M. Nieto-Vesperinas, Phys. Rev. Lett. 88, 207403 (2002)

    Article  ADS  Google Scholar 

  5. S.A. Cummer, B.I. Popa, D. Schurig, D.R. Smith, J.B. Pendry, Phys. Rev. E 74, 036621 (2006)

    Article  ADS  Google Scholar 

  6. D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Phys. Rev. E 314, 977 (2006)

    Google Scholar 

  7. W. Cai, U.K. Chettiar, A.V. Kildishev, V.M. Shalaev, J.B. Pendry, Nat. Photon. 1, 224 (2007)

    Article  ADS  Google Scholar 

  8. M. Rahm, S.A. Cummer, D. Schurig, J.B. Pendry, D.R. Smith, Phys. Rev. Lett. 100, 063903 (2008)

    Article  ADS  Google Scholar 

  9. W.X. Jiang, T.J. Cui, Q. Cheng, J.Y. Chin, X.M. Yang, R. Liu, D.R. Smith, Appl. Phys. Lett. 96, 264101 (2008)

    Article  ADS  Google Scholar 

  10. M.A. Antoniades, G.V. Eleftheriades, IEEE Antennas Wireless Propag. Lett. 7, 425 (2008)

    Article  ADS  Google Scholar 

  11. J. Zhu, G.V. Eleftheriades, IEEE Antennas Wireless Propag. Lett. 8, 295 (2009)

    Article  ADS  Google Scholar 

  12. T. Liu, X. Cao, J. Gao, Q. Zheng, W. Li, H. Yang, IEEE Trans. Antennas Propag. 61, 1479 (2013)

    Article  ADS  Google Scholar 

  13. J. Garca-Garca, J. Bonache, I. Gil, F. Martn, M.C. Velazquez-Ahumada, J. Martel, IEEE Trans. Microwave Theory Tech. 54, 2628 (2006)

    Article  ADS  Google Scholar 

  14. H.F. Ma, W.X. Tang, Q. Cheng, T.J. Cui, Appl. Phys. Lett. 105, 081908 (2014)

    Article  ADS  Google Scholar 

  15. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Phys. Rev. Lett. 100, 207402 (2008)

    Article  ADS  Google Scholar 

  16. H. Tao, N.I. Landy, C.M. Bingham, X. Zhang, R.D. Averitt, W.J. Padilla, Opt. Express 16, 7181 (2008)

    Article  ADS  Google Scholar 

  17. Y. Cheng, H. Yang, J. Appl. Phys. 108, 034906 (2010)

    Article  ADS  Google Scholar 

  18. H. Li, L.H. Yuan, B. Zhou, X.P. Shen, Q. Cheng, T.J. Cui, J. Appl. Phys. 110, 014909 (2011)

    Article  ADS  Google Scholar 

  19. X. Liu, T. Starr, A.F. Starr, W.J. Padilla, Phys. Rev. Lett. 104, 207403 (2010)

    Article  ADS  Google Scholar 

  20. M. Li, H.L. Yang, X.W. Hou, Y. Tian, D.Y. Hou, Prog. Electromagn. Res. 108, 37 (2010)

    Article  Google Scholar 

  21. M.C.K. Wiltshire, J.B. Pendry, I.R. Young, D.J. Larkman, D.J. Gilderdale, J.V. Hajnal, Science 291, 849 (2001)

    Article  ADS  Google Scholar 

  22. J.H. Lv, B.R. Yan, M.H. Liu, X.W. Hu, Phys. Rev. E 80, 026605 (2009)

    Article  ADS  Google Scholar 

  23. H.O. Moser, B.D.F. Casse, O. Wilhelmi, B.T. Saw, Phys. Rev. Lett. 94, 063901 (2005)

    Article  ADS  Google Scholar 

  24. H.J. Lezec, J.A. Dionne, H.A. Atwater, Science 316, 430 (2007)

    Article  ADS  Google Scholar 

  25. H. Tao, C.M. Bingham, D. Pilon, K. Fan, A.C. Strikwerda, D. Shrekenhamer, R.D. Averitt, J. Phys. D 43, 225102 (2010)

    Article  ADS  Google Scholar 

  26. L. Huang, H. Chen, Prog. Electromagn. Res. 113, 103 (2011)

    Article  Google Scholar 

  27. X.Y. Peng, B. Wang, S. Lai, D.H. Zhang, J.H. Teng, Opt. Express 20, 27756 (2012)

    Article  ADS  Google Scholar 

  28. D. Zheng, Y. Cheng, D. Cheng, Y. Nie, R.Z. Gong, Prog. Electromagn. Res. 142, 221 (2013)

    Article  Google Scholar 

  29. Y.Z. Cheng, Y. Nie, R.Z. Gong, H.L. Yang, Eur. Phys. J. Appl. Phys. 56, 31301 (2011)

    Article  ADS  Google Scholar 

  30. G.D. Wang, M.H. Liu, X.W. Hu, L.H. Kong, L.L. Cheng, Z.Q. Chen, Eur. Phys. J. B 86, 304 (2013)

    Article  ADS  Google Scholar 

  31. S. Gu, J.P. Barrett, T.H. Hand, B.I. Popa, S.A. Cummer, J. Appl. Phys. 108, 064913 (2010)

    Article  ADS  Google Scholar 

  32. F. Ding, Y. Cui, X. Ge, Y. Jin, S. He, Appl. Phys. Lett. 100, 103506 (2012)

    Article  ADS  Google Scholar 

  33. Y. Cheng, Y. Nie, X. Wang, R. Gong, J. Appl. Phys. 115, 064902 (2014)

    Article  ADS  Google Scholar 

  34. L. Sun, H. Cheng, Y. Zhou, J. Wang, Opt. Express 20, 4675 (2012)

    Article  ADS  Google Scholar 

  35. Y.Z. Cheng, Y. Nie, R.Z. Gong, Appl. Phys. B 111, 483 (2013)

    Article  ADS  Google Scholar 

  36. J.F. Zhu, Z.F. Ma, W.J. Sun, F. Ding, Q. He, L. Zhou, Y.G. Ma, Appl. Phys. Lett. 105, 073903 (2014)

    Article  Google Scholar 

  37. Y. Sheng, J.F. Zhu, W.D. Xu, W. Jiang, J. Yuan, G. Yin, L.J. Xie, Y.G. Ma, Appl. Phys. Lett. 107, 073903 (2015)

    Article  ADS  Google Scholar 

  38. S. Ghosh, S. Bhattacharyya, D. Chaurasiya, K.V. Srivastava, IEEE Antennas Wireless Propag. Lett. 14, 1172 (2015)

    Article  ADS  Google Scholar 

  39. J.F. Chen, X.T. Huang, G. Zerihun, Z.Y. Hu, S.M. Wang, G.D. Wang, X.W. Hu, M.H. Liu, J. Electron. Mater. 44, 4269 (2015)

    Article  ADS  Google Scholar 

  40. B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, T. Jiang, Prog. Electromagn. Res. 101, 231 (2010)

    Article  Google Scholar 

  41. Y.Z. Cheng, Y. Wang, Y. Nie, R.Z. Gong, X. Xiong, X. Wang, J. Appl. Phys. 111, 044902 (2012)

    Article  ADS  Google Scholar 

  42. B. Wang, T. Koschny, C.M. Soukoulis, Phys. Rev. B 80, 033108 (2009)

    Article  ADS  Google Scholar 

  43. L. Li, Y. Yang, C. Liang, J. Appl. Phys. 110, 063702 (2011)

    Article  ADS  Google Scholar 

  44. X. Shen, T.J. Cui, J. Zhao, H.F. Ma, W.X. Jiang, H. Li, Opt. Express 19, 9401 (2011)

    Article  ADS  Google Scholar 

  45. H.T. Chen, Opt. Express 20, 7165 (2012)

    Article  ADS  Google Scholar 

  46. X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, T.J. Cui, Appl. Phys. Lett. 101, 154102 (2012)

    Article  ADS  Google Scholar 

  47. G.D. Wang, M.H. Liu, X.W. Hu, L.H. Kong, L.L. Cheng, Z.Q. Chen, Chin. Phys. B 23, 017802 (2014)

    Article  ADS  Google Scholar 

  48. T. Wanghuang, W. Chen, Y. Huang, G. Wen, AIP Adv. 3, 102118 (2013)

    Article  ADS  Google Scholar 

  49. F. Dincer, M. Karaaslan, E. Unal, O. Akgol, C. Sabah, J. Electron. Mater. 43, 3949 (2014)

    Article  ADS  Google Scholar 

  50. X. Chen, T.M. Grzegorczyk, B.I. Wu, J. Pacheco Jr, J.A. Kong, Phys. Rev. E 70, 016608 (2004)

    Article  ADS  Google Scholar 

  51. Y.Z. Cheng, H.L. Yang, Z.Z. Cheng, B.X. Xiao, Phot. Nano. Fund. Appl. 9, 8 (2011)

    Article  Google Scholar 

  52. D.R. Smith, D.C. Vier, Th. Koschny, C.M. Soukoulis, Phys. Rev. E 71, 036617 (2005)

    Article  ADS  Google Scholar 

  53. D.X. Ye, Z. Wang, Z.Y. Wang, K.W. Xu, B. Zhang, J.T. Huangfu, C.Z. Li, L.X. Ran, IEEE Trans. Antennas Propag. 60, 5164 (2007)

    Article  ADS  Google Scholar 

  54. W.J. Padilla, M.T. Aronsson, C. Highstrete, M. Lee, A.J. Taylor, R.D. Averitt, Phys. Rev. B 75, 041102 (2007)

    Article  ADS  Google Scholar 

  55. Y.Z. Cheng, H.L. Yang, Z.Z. Cheng, N. Wu, Appl. Phys. A 12, 99 (2011)

    Article  ADS  Google Scholar 

  56. L. Huang, D.R. Chowdhury, S. Ramani, M.T. Reiten, S.N. Luo, A.K. Azad, H.T. Chen, Appl. Phys. Lett. 101, 101102 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junfeng Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Hu, Z., Wang, S. et al. A triple-band, polarization- and incident angle-independent microwave metamaterial absorber with interference theory. Eur. Phys. J. B 89, 14 (2016). https://doi.org/10.1140/epjb/e2015-60626-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60626-y

Keywords

Navigation