Skip to main content
Log in

Improved Structural and Electrical Properties of ZnO-Based Thin Film Transistors by Using Pulsed KrF Excimer Laser Irradiation

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report on the characteristics of ZnO-based thin film transistors (TFT) fabricated by radio frequency magnetron sputtering. The surface of the ZnO channel layers were treated by pulsed KrF excimer laser irradiation (ELI) to improve the structural and electrical properties. The ZnO TFT device is of bottom gate type, which consists of SiO2 as a gate insulator and indium tin oxide as a gate deposited onto Corning glass substrates. The root-mean-square surface roughness and structural property of ZnO channel layer was significantly improved by the ELI treatment. The laser-treated ZnO TFT exhibited a saturation mobility of 19.27 cm2/V s, an on/off ratio greater than 105, the off current of less than 10−7 A, and a threshold voltage of 1.1 V. These results revealed the significant improvement of device characteristics and demonstrated that the pulsed KrF ELI treatment is an effective way to improve the ZnO TFT device performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.M. Sze, Physics of Semiconductor Devices, 2nd Ed. Ch. 6 (John Wiley & Sons, New York, NY, 1981).

  2. C.R. Kagan and P. Andry, Thin-Film Transistors, Marcel Dekker, New York, Ch. 1 (2003).

  3. J.F. Wager, Science 300, 1245 (2003).

    Article  Google Scholar 

  4. T.I. Suzuki, A. Ohtomo, A. Tsukazaki, F. Sato, J. Nishii, H. Ohno, and M. Kawasaki, Adv. Mater. 16, 1887 (2004).

    Article  Google Scholar 

  5. H. Li, D. Hana, J. Dong, W. Yu, Y. Liang, Z. Luo, S. Zhang, X. Zhang, and Y. Wang, Appl. Surf. Sci. 439, 632 (2018).

    Article  Google Scholar 

  6. E.M.C. Fortunato, P.M.C. Barquinha, A.C.M.B.G. Pimentel, A.M.F. Goncalves, A.J.S. Marques, L.M.N. Pereira, and R.F.P. Martins, Adv. Mater. 17, 590 (2005).

    Article  Google Scholar 

  7. S.J. Chang, M. Cheralathan, M. Bawedin, B. Iniguez, B. Bayraktaroglu, J.H. Lee, J.H. Lee, and S. Cristoloveanu, Solid-State Electron. 90, 134 (2013).

    Article  Google Scholar 

  8. T. Varma, C. Periasamy, and D. Boolchandani, Superlattices Microstruct. 114, 284 (2018).

    Article  Google Scholar 

  9. R.L. Hoffman, B.J. Norris, and J.F. Wager, Appl. Phys. Lett. 82, 733 (2003).

    Article  Google Scholar 

  10. D.K. Hwang, M.S. Oh, J.H. Lim, and S.J. Park, J. Phys. D 40, R387 (2007).

    Article  Google Scholar 

  11. Z. Xiong, X.-C. Liu, S.-Y. Zhuo, J.-H. Yang, E.-W. Shi, and W.-S. Yan, Appl. Phys. Lett. 99, 052513 (2011).

    Article  Google Scholar 

  12. S.H. Liu, H.S. Hsu, G. Venkataiah, X. Qi, C.R. Lin, J.F. Lee, K.S. Liang, and J.C.A. Huang, Appl. Phys. Lett. 96, 262504 (2010).

    Article  Google Scholar 

  13. A. Janotti and C.G. Van de Walle, Appl. Phys. Lett. 87, 122102 (2005).

    Article  Google Scholar 

  14. M. Faiz and N. Tabet, AIP Conf. Proceed. 929, 147 (2007).

    Article  Google Scholar 

  15. J.S. Park, J.K. Jeong, Y.G. Mo, H.D. Kim, and S.I. Kim, Appl. Phys. Lett. 90, 262106 (2007).

    Article  Google Scholar 

  16. K. Remashan, D.K. Hwang, S.D. Park, J.W. Bae, G.Y. Yeom, S.J. Park, and J.H. Jang, Electrochem. Solid-State Lett. 11, H55 (2008).

    Article  Google Scholar 

  17. H.S. Bae, J.H. Kim, and S.I. Im, Electrochem. Solid-State Lett. 7, G279 (2004).

    Article  Google Scholar 

  18. F.H. Alshammari, P.K. Nayak, Z. Wang, and H.N. Alshareef, ACS Appl. Mater. Interfaces 8, 22751 (2016).

    Article  Google Scholar 

  19. W. Ye, J. Deng, X. Wang, and L. Cui, Appl. Surf. Sci. 390, 831 (2016).

    Article  Google Scholar 

  20. K.W. Jang, D. Wee, Y.H. Kim, J. Kim, T. Ahn, J.W. Ka, and M.H.Y, Langmuir 29, 7143 (2013).

  21. M.A. Dominguez, F. Flores, J. Martinez, and A.O. Diaz, Thin Solid Films 615, 243 (2016).

    Article  Google Scholar 

  22. C. Yang, E.J. Yoo, S.W. Lee, T.K. An, and S.H. Kim, Chin. J. Phys. 54, 471 (2016).

    Article  Google Scholar 

  23. T. Sameshima and S. Usui, Appl. Phys. Lett. 59, 2724 (1991).

    Article  Google Scholar 

  24. J.J. Kim, J.Y. Bak, J.H. Lee, H.S. Kim, N.W. Jang, Y. Yun, and W.J. Lee, Thin Solid Films 518, 3022 (2010).

    Article  Google Scholar 

  25. I.H. Song, S.H. Kang, W.J. Nam, and M.K. Han, IEEE Elect. Device Lett. 24, 580 (2003).

    Article  Google Scholar 

  26. C.H. Kim, I.H. Song, W.J. Nam, and M.K. Han, IEEE Elect. Device Lett. 23, 315 (2003).

    Google Scholar 

  27. C.N. Chen and J.J. Huang, J. Appl. Res. Technol. 13, 170 (2015).

    Article  Google Scholar 

  28. J.J. Kim, J.Y. Bak, J.H. Lee, H.S. Kim, N.W. Jang, Y. Yun, and W.J. Lee, Thin Solid Films 518, 3022 (2010).

    Article  Google Scholar 

  29. M.N. Fujii, Y. Ishikawa, R. Ishihara, J.V.D. Cingel, M.R.T. Mofrad, J.P.S. Bermundo, E. Kawashima, S. Tomai, K. Yano, and Y. Uraoka, AIP Adv. 6, 065216 (2016).

    Article  Google Scholar 

  30. S. Vyas, Chin. J. Phys. 56, 117 (2018).

    Article  Google Scholar 

  31. M. Nakata, K. Takechi, T. Eguchi, E. Tokumitsu, H. Yamaguchi, and S. Kaneko, Jpn. J. Appl. Phys. 48, 081608 (2009).

    Article  Google Scholar 

  32. R. Navamathavan, E.J. Yang, J.H. Lim, D.K. Hwang, J.Y. Oh, J.H. Yang, J.H. Jang, and S.J. Park, J. Electrochem. Soc. 153, G385 (2006).

    Article  Google Scholar 

  33. R. Navamathavan, C.K. Choi, E.J. Yang, J.H. Lim, D.K. Hwang, and S.J. Park, Solid-State Electron. 52, 813 (2008).

    Article  Google Scholar 

  34. H. Faber, J. Hirschmann, M. Klaumunzer, B. Braunschweig, W. Peukert, and M. Halik, ACS Appl. Mater. Interfaces 4, 1693 (2012).

    Article  Google Scholar 

  35. H. Faber, M. Burkhardt, A. Jedaa, D. Kablein, H. Klauk, and M. Halik, Adv. Mater. 21, 3099 (2009).

    Article  Google Scholar 

  36. R. Collongues, D. Gourier, A.K. Harari, A.M. Lejus, J. Thery, and D. Vivien, Annu. Rev. Mater. Sci. 20, 51 (1990).

    Article  Google Scholar 

  37. S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, and T. Kawai, J. Appl. Phys. 93, 1624 (2003).

    Article  Google Scholar 

  38. B.J. Norris, J. Anderson, J.F. Wager, and D.A. Keszler, J. Appl. Phys. D Appl. Phys. 36, L105 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Navamathavan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, MS., Nirmala, R. & Navamathavan, R. Improved Structural and Electrical Properties of ZnO-Based Thin Film Transistors by Using Pulsed KrF Excimer Laser Irradiation. J. Electron. Mater. 48, 3137–3144 (2019). https://doi.org/10.1007/s11664-019-07080-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07080-2

Keywords

Navigation