Skip to main content
Log in

Microwave Absorbing Properties of Flaky Carbonyl Iron Powder Prepared by Rod Milling Method

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The rod milling method of cylindrical-shaped milling medium was applied to prepare the flaky carbonyl iron powders with varying milling times (10 h, 15 h and 20 h). The sample obtained by the spherical milling medium was also used as a contrast. The samples were characterized by x-ray diffraction, scanning electron microscopy and Raman spectroscopy, respectively. The complex permittivity and permeability were measured by vector network analyzer in the frequency range of 1–18 GHz. The results revealed that cylinder-prepared samples have better impedance matching properties and good absorbing properties. The minimum reflection loss (RL) of − 15.7 dB was observed at 6.0 GHz with a thickness of 1.5 mm, and the effective absorption frequency (RL < − 10 dB) ranged from 4.5 GHz to 8.5 GHz. This method is expected to play an important role for the promising design of flaky microwave absorbers, which can be applied to fifth-generation (5G) communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Yan, J. Wang, X. Han, Y. Ren, Q. Liu, and F. Li, Nanotechnology 21, 095708 (2010).

    Article  Google Scholar 

  2. N. Tian, C.Y. You, J. Liu, F. Qu, C.H. Wang, and Z.X. Lu, J. Magn. Magn. Mater. 339, 114 (2013).

    Article  Google Scholar 

  3. Á. Kukovecz, T. Kanyó, Z. Kónya, and I. Kiricsi, Carbon 43, 994 (2005).

    Article  Google Scholar 

  4. P. Baláž and E. Dutková, Miner. Eng. 22, 681 (2009).

    Article  Google Scholar 

  5. L. Russo, F. Colangelo, R. Cioffi, I. Rea, and L.D. Stefano, Materials 4, 1023 (2011).

    Article  Google Scholar 

  6. L. Takacs, Prog. Mater. Sci. 47, 355 (2002).

    Article  Google Scholar 

  7. N.S. Lameck, K.K. Kiangi, and M.H. Moys, Miner. Eng. 19, 1357 (2006).

    Article  Google Scholar 

  8. F.L. von Krüger, J.D. Donda, M.A.R. Drummond, and A.E.C. Peres, Dev. Miner. Process. 13, C4–86 (2000). https://doi.org/10.1016/S0167-4528(00)80031-9.

    Google Scholar 

  9. A.Z.M. Abouzeid and D.W. Fuerstenau, Int. J. Miner. Process. 102, 51 (2012).

    Article  Google Scholar 

  10. M.D. Sinnott, P.W. Cleary, and R.D. Morrison, Miner. Eng. 24, 138 (2011).

    Article  Google Scholar 

  11. P. Bhattacharya and C.K. Das, Ind. Eng. Chem. Res. 52, 9594 (2013).

    Article  Google Scholar 

  12. Y. Kato, M. Horibe, M. Ameya, and S. Kurokawa, IEEE Trans. Instrum. Meas. 64, 1748 (2015).

    Article  Google Scholar 

  13. H. Zhao, S.Y. Xu, D.M. Tang, Y. Yang, and B.S. Zhang, J. Appl. Phys. 116, 243911 (2014).

    Article  Google Scholar 

  14. Y.C. Qing, W.C. Zhou, F. Luo, and D.M. Zhu, J. Magn. Magn. Mater. 323, 600 (2011).

    Article  Google Scholar 

  15. J. Sandler, M. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, and A.H. Windle, Polymer 40, 5967 (1999).

    Article  Google Scholar 

  16. J. He, W. Wang, and J. Guan, J. Appl. Phys. 111, 093924 (2012).

    Article  Google Scholar 

  17. F.S. Wen, W.L. Zuo, H.B. Yi, N. Wang, L. Qiao, and F.S. Li, Phys. B Condens. Matter 404, 3567 (2009).

    Article  Google Scholar 

  18. J. Sun, H. Xu, Y. Shen, H. Bi, W. Liang, and R.B. Yang, J. Alloys Compd. 548, 18 (2013).

    Article  Google Scholar 

  19. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, Nano Lett. 7, 238 (2007).

    Article  Google Scholar 

  20. A. Naik, J. Zhou, C. Gao, G. Liu, and L. Wang, J. Energy Inst. 89, 21 (2016).

    Article  Google Scholar 

  21. X. Weng, B. Li, Y. Zhang, X. Lv, and G. Gu, J. Alloys Compd. 695, 508 (2017).

    Article  Google Scholar 

  22. A. Hajalilou, M. Hashim, M. Nahavandi, and I. Ismail, Adv. Powder Technol. 25, 423 (2014).

    Article  Google Scholar 

  23. S.S. Kim, S.T. Kim, Y.C. Yoon, and K.S. Lee, J. Appl. Phys. 97, 10F905 (2005). https://doi.org/10.1063/1.1852371.

    Article  Google Scholar 

  24. R.B. Yang and W.F. Liang, J. Appl. Phys. 109, 07A311 (2011). https://doi.org/10.1063/1.3536340.

    Article  Google Scholar 

  25. Y.B. Feng, T. Qiu, C.Y. Shen, and X.Y. Li, IEEE Trans. Magn. 42, 363 (2006).

    Article  Google Scholar 

  26. P.C. Ji, G.Z. Xie, N.Y. Xie, J. Li, J.W. Chen, R.Q. Xu, and J. Chen, J. Mater. Sci. Mater. Electron. 29, 4711 (2018).

    Article  Google Scholar 

  27. S. Yoshida, S. Ando, Y. Shimada, and K. Suzuki, J. Appl. Phys. 93, 6659 (2003).

    Article  Google Scholar 

  28. T. Maeda, S. Sugimoto, T. Kagotani, N. Tezuka, and K. Inomata, J. Magn. Magn. Mater. 281, 195 (2004).

    Article  Google Scholar 

  29. L.J. Deng, P.H. Zhou, J.L. Xie, and L. Zhang, J. Appl. Phys. 101, 103916 (2007). https://doi.org/10.1063/1.2733610.

    Article  Google Scholar 

  30. W. Liu, Q. Shao, G. Ji, X. Liang, Y. Cheng, B. Quan, and Y. Du, Chem. Eng. J. 313, 734 (2017).

    Article  Google Scholar 

  31. F.S. Wen, L. Qiao, D. Zhou, W.L. Zuo, H.B. Yi, and F.S. Li, Chin. Phys. B 17, 2263 (2008).

    Article  Google Scholar 

  32. M. Wu, Y.D. Zhang, S. Hui, T.D. Xiao, S.H. Ge, W.A. Hines, J.I. Budnick, and G.W. Taylor, Appl. Phys. Lett. 80, 4404 (2002).

    Article  Google Scholar 

  33. X.F. Zhang, X.L. Dong, H. Huang, Y.Y. Liu, W.N. Wang, X.G. Zhu, B. Lv, J.P. Lei, and C.G. Lee, Appl. Phys. Lett. 89, 053115 (2006).

    Article  Google Scholar 

  34. L. Qiao, F.S. Wen, J.Q. Wei, J.B. Wang, and F.S. Li, J. Appl. Phys. 103, 063903 (2008).

    Article  Google Scholar 

  35. T. Kasagi, T. Tsutaoka, and K. Hatakeyama, IEEE Trans. Magn. 35, 3424 (2002).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 11304159); the Introduction of Talent Scientific Research Fund of Nanjing University of Posts and Telecommunications (Grant No. NY213016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guozhi Xie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, P., Xie, G., Xie, N. et al. Microwave Absorbing Properties of Flaky Carbonyl Iron Powder Prepared by Rod Milling Method. J. Electron. Mater. 48, 2495–2500 (2019). https://doi.org/10.1007/s11664-019-06986-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-06986-1

Keywords

Navigation