Skip to main content
Log in

Enhanced microwave absorption performance of FeSiBCCr flake amorphous powder from ball milling

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Magnetic loss electromagnetic wave absorber materials have always been a research hotspot in the electromagnetic wave absorption field due to their excellent magnetic loss performance. However, their use is limited by the problem of impedance mismatch. In this study, taking into account the good soft magnetic properties and high amorphous forming ability of the FeSiBCCr amorphous alloy system, the spherical powder was transformed into a flaky powder through high-energy ball milling and uniformly mixed with a certain mass ratio of paraffin to produce high performance wave absorber. It was found that, compared with spherical powders, the flaky powder particles mixed with paraffin not only enlarged the surface area of the filler and improved the mechanism of polarization, but also increased the complex permeability and complex permittivity, thus providing strong electromagnetic wave attenuation capability. The flaky amorphous powder after ball milling for 4 h shows the highest electromagnetic wave absorption performance, and the minimum reflectivity loss at the frequency of 9.25 GHz reaches − 40.82 dB when the thickness of the wave absorber (50 vol% powder) is 2.5 mm. The maximum effective absorption bandwidth is up to 4.9 GHz. The FeSiBCCr flaky amorphous powder prepared in this work shows a broad absorption potential above 18 GHz, which can well solve the impedance mismatch problem, and provides a strategy for the synthesis of magnetic loss electromagnetic wave-absorbing materials with impedance matching and broad absorption strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data presented in this article are available at request from the corresponding author.

References

  1. H. Pang, Y. Duan, L. Huang, L. Song, J. Liu, T. Zhang, X. Yang, J. Liu, X. Ma, J. Di, X. Liu, Compos. Part B 224, 109173 (2021)

    Article  CAS  Google Scholar 

  2. R. Hu, G. Tan, X. Gu, S. Chen, C. Wu, Q. Man, C. Chang, X. Wang, R. Li, S. Che, L. Jiang, J. Alloys Compd. 730, 255 (2018)

    Article  CAS  Google Scholar 

  3. R. Peymanfar, A. Ahmadi, E. Selseleh-Zakerin, J. Alloys Compd. 848, 156453 (2020)

    Article  CAS  Google Scholar 

  4. Y. Duan, L. Song, Y. Cui, H. Pang, X. Zhang, T. Wang, J. Alloys Compd. 848, 156491 (2020)

    Article  CAS  Google Scholar 

  5. J. Ge, J. Qian, Y. Cui, L. Liu, Synth. Met. 293, 117270 (2023)

    Article  CAS  Google Scholar 

  6. Z. Wu, K. Pei, L. Xing, X. Yu, W. You, R. Che, Adv. Funct. Mater. 29, 1901448 (2019)

    Article  Google Scholar 

  7. Q. Lu, Y. Su, X. Lv, L. Wang, J. Zhang, J. Alloys Compd. 941, 168842 (2023)

    Article  CAS  Google Scholar 

  8. Y. Zhang, Y. Li, M. Wei, D. Yang, Q. Zhang, B. Zhang, J. Mater. Sci. Technol. 128, 148 (2022)

    Article  CAS  Google Scholar 

  9. C. Wang, Y. Wang, H. Jiang, X. Xu, Y. Yue, B. Cui, M. Li, Z. Xu, Ceram. Int. 49, 2792 (2023)

    Article  CAS  Google Scholar 

  10. M.F. Elmahaishi, R.S. Azis, I. Ismail, F.D. Muhammad, J. Mater. Res. Technol. 20, 2188 (2022)

    Article  CAS  Google Scholar 

  11. L. Qiao, J. Bi, G. Liang, C. Liu, Z. Yin, Y. Yang, H. Wang, S. Wang, M. Shang, W. Wang, J. Mater. Sci. Technol. 137, 112 (2023)

    Article  Google Scholar 

  12. X. Chen, H. Liu, D. Hu, H. Liu, W. Ma, Ceram. Int. 47, 23749 (2021)

    Article  CAS  Google Scholar 

  13. K. Pontes, B.G. Soares, Synth. Met. 288, 117096 (2022)

    Article  CAS  Google Scholar 

  14. K. Chand, X. Zhang, Y. Chen, Arab. J. Chem. 15, 104143 (2022)

    Article  CAS  Google Scholar 

  15. X. Hou, W. Wang, X. Gao, K. Ran, Y. Huang, Z. Zhang, Y. Fang, S. Wang, D. He, W. Ye, R. Zhao, W. Xue, Carbon 199, 268 (2022)

    Article  CAS  Google Scholar 

  16. L. Zhang, Y. Liu, S.U. Rehman, L. Wang, Y. Chen, S. Shen, C. Chen, T. Liang, Ceram. Int. 49, 12972 (2023)

    Article  CAS  Google Scholar 

  17. Z. Jiao, W. Huyan, J. Yao, Z. Yao, J. Zhou, P. Liu, J. Mater. Sci. Technol. 113, 166 (2022)

    Article  CAS  Google Scholar 

  18. X. Cai, J. Wang, K. Cui, H. Shi, J. Yin, J. Mater. Sci. 28, 9596 (2017)

    CAS  Google Scholar 

  19. Z. Hou, P. Yan, B. Sun, H. Elshekh, B. Yan, Results Phys. 14, 102498 (2019)

    Article  Google Scholar 

  20. B. Wang, Q. Wu, Y. Fu, T. Liu, J. Mater. Sci. Technol. 86, 91 (2021)

    Article  CAS  Google Scholar 

  21. W. Zhou, C. Zeng, Z. Zhu, J. Rare Earths 41, 130 (2023)

    Article  CAS  Google Scholar 

  22. C. Zhang, Y. Li, Y. Duan, W. Zhang, J. Magn. Magn. Mater. 497, 165988 (2020)

    Article  CAS  Google Scholar 

  23. S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, A.V. Trukhanov, V.A. Turchenko, D.I. Tishkevich, E.L. Trukhanova, V.V. Oleynik, O.S. Yakovenko, LYu. Matzui, D.A. Vinnik, J. Magn. Magn. Mater. 442, 300 (2017)

    Article  CAS  Google Scholar 

  24. P. He, Z. Hou, K. Zhang, J. Li, K. Yin, S. Feng, S. Bi, J. Mater. Sci. 52, 8258 (2017)

    Article  CAS  Google Scholar 

  25. H. Xu, S. Bie, J. Jiang, W. Yuan, Q. Chen, Y. Xu, J. Magn. Magn. Mater. 401, 567 (2016)

    Article  CAS  Google Scholar 

  26. T.D. Zhou, J.K. Tang, Z.Y. Wang, J. Magn. Magn. Mater. 322, 2589 (2010)

    Article  CAS  Google Scholar 

  27. K.M. Lim, M.C. Kim, K.A. Lee, C.G. Park, IEEE Trans. Magn. 39, 1836 (2003)

    Article  CAS  Google Scholar 

  28. Q. Jia, W. Li, Q. Zeng, X. Qiao, J. Mater. Sci: Mater. Electron. 33, 14043 (2022)

    CAS  Google Scholar 

  29. N. Shi, H. Xu, C. Chen, Y. Wu, B. Yang, T. Zhang, J. Alloys Compd. 797, 39 (2019)

    Article  CAS  Google Scholar 

  30. S. Chen, G. Tan, X. Gu, Q. Man, F. Li, C. Chang, X. Wang, R.-W. Li, J. Alloys Compd. 705, 309 (2017)

    Article  CAS  Google Scholar 

  31. C. Ding, Y. Cheng, X.L. Li, C.X. Peng, L. Wang, J. Electron. Mater. 47, 5981 (2018)

    Article  CAS  Google Scholar 

  32. B. Zhou, M. Lv, J. Wu, B. Ya, L. Meng, L. Jianglin, X. Zhang, Materials 15, 2558 (2022)

    Article  CAS  Google Scholar 

  33. B. Zhang, Y. Duan, Y. Cui, G. Ma, T. Wang, X. Dong, Mater. Design 149, 173 (2018)

    Article  CAS  Google Scholar 

  34. K.P. Su, J. Wang, H.O. Wang, D.X. Huo, L.W. Li, Y.Q. Cao, Z.W. Liu, J. Alloys Compd. 640, 114 (2015)

    Article  CAS  Google Scholar 

  35. X. Zhang, D. Liang, X. Wang, P. Zhou, J. Alloys Compd. 582, 558 (2014)

    Article  CAS  Google Scholar 

  36. J. He, L. Deng, S. Liu, S. Yan, H. Luo, Y. Li, L. He, S. Huang, J. Magn. Magn. Mater. 444, 49 (2017)

    Article  CAS  Google Scholar 

  37. Y. Zhai, D. Zhu, W. Zhou, D. Min, F. Luo, J. Magn. Magn. Mater. 467, 82 (2018)

    Article  CAS  Google Scholar 

  38. G. Li, H. Zhao, H. Wang, Z. Zhou, L. Gao, W. Su, C. Dong, J. Alloys Compd. 941, 168822 (2023)

    Article  CAS  Google Scholar 

  39. H. Wei, Z. Zhang, G. Hussain, L. Zhou, Q. Li, K. Ken, Ostrikov Appl. Mater. Today. 19, 100596 (2020)

    Article  Google Scholar 

  40. G. He, Y. Duan, H. Pang, Nano-Micro Lett. 12, 57 (2020)

    Article  CAS  Google Scholar 

  41. P. Wu, W. He, H. Guo, Ceram. Int. 48, 8740 (2022)

    Article  CAS  Google Scholar 

  42. J. Shu, M. Cao, M. Zhang, X. Wang, W. Cao, X. Fang, M. Cao, Adv. Funct. Mater. 30, 1908299 (2020)

    Article  CAS  Google Scholar 

  43. C. Shi, Y. Su, Z. Luo, J. Zhang, H. Zhang, J. Alloys Compd. 859, 157835 (2021)

    Article  CAS  Google Scholar 

  44. S. Zhu, Z. Lei, Z. Liu, F. Wu, J. Song, Z. Yang, G. Tan, Q. Man, X. Liu, J. Alloys Compd. 907, 164445 (2022)

    Article  CAS  Google Scholar 

  45. H. Zhou, L. Jiang, S. Zhu, L. Wang, Y. Hu, X. Zhang, A. Wu, J. Alloys Compd. 936, 168282 (2023)

    Article  CAS  Google Scholar 

  46. Z. Zou, M. Ning, Z. Lei, X. Zhuang, G. Tan, J. Hou, H. Xu, Q. Man, J. Li, R. Li, Carbon 193, 182 (2022)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Youth Innovation Promotion Association CAS (Grant No. 2021294), Zhejiang Provincial Key Research and Development Projects (Grant No. 2021C01033), and Science and Technology Service Network Initiative of the Chinese Academy of Sciences (Grant No. KFJ-STS-QYZD-2021-07-002).

Author information

Authors and Affiliations

Authors

Contributions

HW: conceptualization, data curation, writing—original draft, writing—review and editing. YD: resources, writing—review and editing. LZ: methodology. SZ: supervision. XJ: supervision. JL: methodology. AH: conceptualization. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yaqiang Dong.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Dong, Y., Zhang, L. et al. Enhanced microwave absorption performance of FeSiBCCr flake amorphous powder from ball milling. J Mater Sci: Mater Electron 34, 1666 (2023). https://doi.org/10.1007/s10854-023-11073-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11073-7

Navigation